2,139 research outputs found

    Comment on "A special attack on the multiparty quantum secret sharing of secure direct communication using single photons"

    Full text link
    In this comment, we show that the special attack [S.-J. Qin, F. Gao, Q.-Y. Wen, F.-C. Zhu, Opt. Commun. 281 (2008) 5472.], which claims to be able to obtain all the transmitted secret message bit values of the protocol of the multiparty quantum secret sharing of secure direct communication using single photons with random phase shift operations, fails. Furthermore, a class of similar attacks are also shown to fail to extract the secrete message.Comment: 2 pages (two-column

    Wigner solution of the quark gap equation

    Full text link
    Solutions and their evolutions of the quark gap equation are studied within the Nambu-Jona--Lasinio model, which is a basic issue for studying the QCD phase structure and locating the possible critical end point. It is shown that in the chiral limit case of the vacuum, chiral symmetry will hold if the coupling strength GG is small, then the system only has the Wigner solution at M=0M=0. If increasing GG, two symmetric minima will appear as the positive and `negative' Nambu solutions, however, the solution M=0M=0 now corresponds to a maximum instead of a minimum of the thermodynamical potential, so is not a physically stable state anymore (we call it `pseudo-Wigner solution'). Besides, it is shown that as the current quark mass mm increases, the pseudo-Wigner solution will become negative, and disappear together with the negative Nambu solution if mm is large enough. Similar things happen if we increase the temperature or quark chemical potential μ\mu. Some interesting phenomenon is, from some μ\mu a second local minimum will show up. As μ\mu increases gradually, it will be stabler than the Nambu solution, survives even the Nambu solution disappears, and approaches mm, which are just the features of the Wigner solution we expect.Comment: version accepted for publication in the European Physical Journal

    Intelligent diagnostic scheme for lung cancer screening with Raman spectra data by tensor network machine learning

    Full text link
    Artificial intelligence (AI) has brought tremendous impacts on biomedical sciences from academic researches to clinical applications, such as in biomarkers' detection and diagnosis, optimization of treatment, and identification of new therapeutic targets in drug discovery. However, the contemporary AI technologies, particularly deep machine learning (ML), severely suffer from non-interpretability, which might uncontrollably lead to incorrect predictions. Interpretability is particularly crucial to ML for clinical diagnosis as the consumers must gain necessary sense of security and trust from firm grounds or convincing interpretations. In this work, we propose a tensor-network (TN)-ML method to reliably predict lung cancer patients and their stages via screening Raman spectra data of Volatile organic compounds (VOCs) in exhaled breath, which are generally suitable as biomarkers and are considered to be an ideal way for non-invasive lung cancer screening. The prediction of TN-ML is based on the mutual distances of the breath samples mapped to the quantum Hilbert space. Thanks to the quantum probabilistic interpretation, the certainty of the predictions can be quantitatively characterized. The accuracy of the samples with high certainty is almost 100%\%. The incorrectly-classified samples exhibit obviously lower certainty, and thus can be decipherably identified as anomalies, which will be handled by human experts to guarantee high reliability. Our work sheds light on shifting the ``AI for biomedical sciences'' from the conventional non-interpretable ML schemes to the interpretable human-ML interactive approaches, for the purpose of high accuracy and reliability.Comment: 10 pages, 7 figure

    Dynamic expression of cytokine and transcription factor genes during experimental Fasciola gigantica infection in buffaloes

    Get PDF
    Background Determining the mechanisms involved in the immune-pathogenesis of the tropical liver fluke, Fasciola gigantica, is crucial to the development of any effective therapeutic intervention. Here, we examined the differential gene expression of cytokines and transcription factors in the liver of F. gigantica-infected buffaloes, over the course of infection. Methods Water buffaloes (swamp type) were infected orally with 500 F. gigantica encysted metacercariae. Liver tissue samples were collected 3, 10, 28, 42, 70 and 98 days post-infection (dpi). Levels of gene expression of nine cytokines (IFN-γ, TGF-β, IL-1β, IL-4, IL-6, IL-10, IL-12B, IL-13 and IL-17A) and four transcription factors (T-bet, GATA-3, Foxp3 and ROR-γτ) were determined using quantitative real-time PCR (qRT-PCR). We evaluated any correlation between gene expression of these immune-regulatory factors and the severity of liver pathology. Results Histopathological examination revealed that cellular infiltration, hemorrhage and fibrosis without calcification in the liver parenchyma of infected buffaloes, increased over the course of infection. This progressive pathology was attributed to dysregulated and excessive inflammatory responses induced by infection. The early infection phase (3–10 dpi) was marked by a generalized immunosuppression and elevated TGF-β expression in order to facilitate parasite colonization. A mixed Th1/Th2 immune response was dominant from 28 to 70 dpi, to promote parasite survival while minimizing host tissue damage. During late infection (98 dpi), the response was biased towards Th1/Treg in order to inhibit the host’s Th2 protective response and promote chronic infection. Both IL-10 and IL-17A and the Th17/Treg balance, played key roles in mediating the inflammatory and immunoregulatory mechanisms in the liver during chronic fasciolosis. Conclusions Our data showed distinct CD4+ T helper (Th) polarization and cytokine dysregulation in response to F. gigantica infection in water buffaloes over the course of infection. Characterizing the temporal expression profiles for host immune genes during infection should provide important information for defining how F. gigantica adapts and survives in the liver of buffaloes and how host immune responses influence F. gigantica pathogenicity

    Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis

    Get PDF
    Twelve Chinese indigenous goat populations were genotyped for twenty-six microsatellite markers recommended by the EU Sheep and Goat Biodiversity Project. A total of 452 goats were tested. Seventeen of the 26 microsatellite markers used in this analysis had four or more alleles. The mean expected heterozygosity and the mean observed heterozygosity for the population varied from 0.611 to 0.784 and 0.602 to 0.783 respectively. The mean FST (0.105) demonstrated that about 89.5% of the total genetic variation was due to the genetic differentiation within each population. A phylogenetic tree based on the Nei (1978) standard genetic distance displayed a remarkable degree of consistency with their different geographical origins and their presumed migration throughout China. The correspondence analysis did not only distinguish population groups, but also confirmed the above results, classifying the important populations contributing to diversity. Additionally, some specific alleles were shown to be important in the construction of the population structure. The study analyzed the recent origins of these populations and contributed to the knowledge and genetic characterization of Chinese indigenous goat populations. In addition, the seventeen microsatellites recommended by the EU Sheep and Goat Biodiversity Project proved to be useful for the biodiversity studies in goat breeds

    Patrilineal Perspective on the Austronesian Diffusion in Mainland Southeast Asia

    Get PDF
    The Cham people are the major Austronesian speakers of Mainland Southeast Asia (MSEA) and the reconstruction of the Cham population history can provide insights into their diffusion. In this study, we analyzed non-recombining region of the Y chromosome markers of 177 unrelated males from four populations in MSEA, including 59 Cham, 76 Kinh, 25 Lao, and 17 Thai individuals. Incorporating published data from mitochondrial DNA (mtDNA), our results indicated that, in general, the Chams are an indigenous Southeast Asian population. The origin of the Cham people involves the genetic admixture of the Austronesian immigrants from Island Southeast Asia (ISEA) with the local populations in MSEA. Discordance between the overall patterns of Y chromosome and mtDNA in the Chams is evidenced by the presence of some Y chromosome lineages that prevail in South Asians. Our results suggest that male-mediated dispersals via the spread of religions and business trade might play an important role in shaping the patrilineal gene pool of the Cham people

    MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MiR-221 and miR-222 (miR-221/222) are frequently up-regulated in various types of human malignancy including glioblastoma. Recent studies have reported that miR-221/222 regulate cell growth and cell cycle progression by targeting p27 and p57. However the underlying mechanism involved in cell survival modulation of miR-221/222 remains elusive.</p> <p>Results</p> <p>Here we showed that miR-221/222 inhibited cell apoptosis by targeting pro-apoptotic gene PUMA in human glioma cells. Enforced expression of miR-22/222 induced cell survival whereas knockdown of miR-221/222 rendered cells to apoptosis. Further, miR-221/222 reduced PUMA protein levels by targeting PUMA-3'UTR. Introducing PUMA cDNA without 3'UTR abrogated miR-221/222-induced cell survival. Notably, knockdown of miR-221/222 induces PUMA expression and cell apoptosis and considerably decreases tumor growth in xenograft model. Finally, there was an inverse relationship between PUMA and miR-221/222 expression in glioma tissues.</p> <p>Conclusion</p> <p>To our knowledge, these data indicate for the first time that miR-221/222 directly regulate apoptosis by targeting PUMA in glioblastoma and that miR-221/222 could be potential therapeutic targets for glioblastoma intervention.</p
    corecore