13 research outputs found

    Curcumin Induces p53-Null Hepatoma Cell Line Hep3B Apoptosis through the AKT-PTEN-FOXO4 Pathway

    Get PDF
    Objective. Curcumin (diferuloylmethane) is a yellow-colored polyphenol with antiproliferative and proapoptotic activities to various types of cancer cells. This study explored the mechanism by which curcumin induces p53-null hepatoma cell apoptosis. Results. AKT, FOXO1, and FOXO3 proteins were downregulated after curcumin treatment. Conversely, PTEN was upregulated. Subcellular fractionations revealed that the FOXO4 protein translocated from cytosol into the nucleus after curcumin treatment. Overexpression of FOXO4 increases the sensitivity of Hep3B cells to curcumin. Knockdown of the FOXO4 gene by siRNA inhibits the proapoptotic effects of curcumin on Hep3B cell. Conclusions. This study revealed the AKT/PTEN/FOXO4 pathway as a potential candidate of target for treatment of p53-null liver cancers

    Enterovirus 71 Maternal Antibodies in Infants, Taiwan

    Get PDF
    Enterovirus 71 (EV71) causes life-threatening disease outbreaks in young children in Asia. This cohort study was conducted to understand the dynamics of maternal EV71 antibodies in Taiwanese young infants. Approximately 50% of neonates had detectable EV71 neutralizing antibodies, which declined to almost undetectable levels by 6 months of age

    Microarray gene expression profiling and analysis in renal cell carcinoma

    Get PDF
    BACKGROUND: Renal cell carcinoma (RCC) is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. METHODS: Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. RESULTS: Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR). Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. CONCLUSIONS: This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most notably, genes involved in cell adhesion were dominantly up-regulated whereas genes involved in transport were dominantly down-regulated. This study reveals significant gene expression alterations in key biological pathways and provides potential insights into understanding the molecular mechanism of renal cell carcinogenesis

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy

    No full text
    Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research

    Ultra-Wideband Positioning Sensor with Application to an Autonomous Ultraviolet-C Disinfection Vehicle

    No full text
    Due to the COVID-19 virus being highly transmittable, frequently cleaning and disinfecting facilities is common guidance in public places. However, the more often the environment is cleaned, the higher the risk of cleaning staff getting infected. Therefore, strong demand for sanitizing areas in automatic modes is undoubtedly expected. In this paper, an autonomous disinfection vehicle with an Ultraviolet-C (UVC) lamp is designed and implemented using an ultra-wideband (UWB) positioning sensor. The UVC dose for 90% inactivation of the reproductive ability of COVID-19 is 41.7 J/m2, which a 40 W UVC lamp can achieve within a 1.6 m distance for an exposure time of 30 s. With this UVC lamp, the disinfection vehicle can effectively sterilize in various scenarios. In addition, the high-accuracy UWB positioning system, with the time difference of arrival (TDOA) algorithm, is also studied for autonomous vehicle navigation in indoor environments. The number of UWB tags that use a synchronization protocol between UWB anchors can be unlimited. Moreover, this proposed Gradient Descent (GD), which uses Taylor method, is a high-efficient algorithm for finding the optimal position for real-time computation due to its low error and short calculating time. The generalized traversal path planning procedure, with the edge searching method, is presented to improve the efficiency of autonomous navigation. The average error of the practical navigation demonstrated in the meeting room is 0.10 m. The scalability of the designed system to different application scenarios is also discussed and experimentally demonstrated. Hence, the usefulness of the proposed UWB sensor applied to UVC disinfection vehicles to prevent COVID-19 infection is verified by employing it to sterilize indoor environments without human operation

    Targeting HR Repair as a Synthetic Lethal Approach to Increase DNA Damage Sensitivity by a RAD52 Inhibitor in BRCA2-Deficient Cancer Cells

    No full text
    BRCA mutation, one of the most common types of mutations in breast and ovarian cancer, has been suggested to be synthetically lethal with depletion of RAD52. Pharmacologically inhibiting RAD52 specifically eradicates BRCA-deficient cancer cells. In this study, we demonstrated that curcumin, a plant polyphenol, sensitizes BRCA2-deficient cells to CPT-11 by impairing RAD52 recombinase in MCF7 cells. More specifically, in MCF7-siBRCA2 cells, curcumin reduced homologous recombination, resulting in tumor growth suppression. Furthermore, a BRCA2-deficient cell line, Capan1, became resistant to CPT-11 when BRCA2 was reintroduced. In vivo, xenograft model studies showed that curcumin combined with CPT-11 reduced the growth of BRCA2-knockout MCF7 tumors but not MCF7 tumors. In conclusion, our data indicate that curcumin, which has RAD52 inhibitor activity, is a promising candidate for sensitizing BRCA2-deficient cells to DNA damage-based cancer therapies
    corecore