38,911 research outputs found

    Spectrum of low-lying s3QQˉs^{3}Q\bar{Q} configurations with negative parity

    Full text link
    Spectrum of low-lying five-quark configurations with strangeness quantum number S=−3S=-3 and negative parity is studied in three kinds of constituent quark models, namely the one gluon exchange, Goldstone Boson exchange, and instanton-induced hyperfine interaction models, respectively. Our numerical results show that the lowest energy states in all the three employed models are lying at ∼\sim1800 MeV, about 200 MeV lower than predictions of various quenched three-quark models. In addition, it is very interesting that the state with the lowest energy in one gluon exchange model is with spin 3/2, but 1/2 in the other two models.Comment: Version published in Phys. Rev.

    Shock-induced consolidation and spallation of Cu nanopowders

    Get PDF
    A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu (∼11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u_i) ranges from 0.2 to 2 km s^(−1). We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u_i are identified for the onset plasticity at the contact points (0.2 km s^(−1)) and complete void collapse (0.5 km s^(−1)). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u_i, while the pronounced, grain-wise deformation may contribute as well at high u_i. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders (∼10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity

    Vibrational Modes in LiBC: Theory Compared with Experiment

    Full text link
    The search for other superconductors in the MgB2 class currently is focussed on Li{1-x}BC, which when hole-doped (concentration x) should be a metal with the potential to be a better superconductor than MgB2. Here we present the calculated phonon spectrum of the parent semiconductor LiBC. The calculated Raman-active modes are in excellent agreement with a recent observation, and comparison of calculated IR-active modes with a recent report provides a prediction of the LO--TO splitting for these four modes, which is small for the B-C bond stretching mode at ~1200 cm^{-1}, but large for clearly resolved modes at 540 cm^{-1} and 620 cm^{-1}.Comment: 4 pages, two embedded figures. Physica B (in press

    Implementing PCAC in Nonperturbative Models of Pion Production

    Get PDF
    Traditional few-body descriptions of pion production use integral equations to sum the strong interactions nonperturbatively. Although much physics is thereby included, there has not been a practical way of incorporating the constraints of chiral symmetry into such approaches. Thus the traditional few-body descriptions fail to reflect the underlying theory of strong interactions, QCD, which is largely chirally symmetric. In addition, the lack of chiral symmetry in the few-body approaches means that their predictions of pion production are in principle not consistent with the partial conservation of axial current (PCAC), a fact that has especially large consequences at low energies. We discuss how the recent introduction of the ``gauging of equations method'' can be used to include PCAC into traditional few-body descriptions and thereby solve this long standing problemComment: Contribution to Proceedings, 1st Asia-Pacific Conference on Few-Body Problems in Physics, Noda/Kashiwa, Japan, 23-28 August 1999, to be published by Springer-Verlag as "Few-Body Systems Supplement". 7 pages, revtex, epsf, 3 Postscript figure

    Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries

    Get PDF
    We perform molecular dynamics simulations of Cu bicrystals with two important grain boundaries (GBs), Σ3 coherent twin boundaries (CTB), and symmetric incoherent twin boundaries (SITB) under planar shock wave loading. It is revealed that the shock response (deformation and spallation) of the Cu bicrystals strongly depends on the GB characteristics. At the shock compression stage, elastic shock wave can readily trigger GB plasticity at SITB but not at CTB. The SITB can induce considerable wave attenuation such as the elastic precursor decay via activating GB dislocations. For example, our simulations of a Cu multilayer structure with 53 SITBs (∼1.5-μm thick) demonstrate a ∼80% elastic shock decay. At the tension stage, spallation tends to occur at CTB but not at SITB due to the high mobility of SITB. The SITB region transforms into a threefold twin via a sequential partial dislocation slip mechanism, while CTB preserves its integrity before spallation. In addition, deformation twinning is a mechanism for inducing surface step during shock tension stage. The drastically different shock response of CTB and SITB could in principle be exploited for, or benefit, interface engineering and materials design

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    The radio structure of 3C 316, a galaxy with double-peaked narrow optical emission lines

    Full text link
    The galaxy 3C\,316 is the brightest in the radio band among the optically-selected candidates exhibiting double-peaked narrow optical emission lines. Observations with the Very Large Array (VLA), Multi-Element Remotely Linked Interferometer Network (e-MERLIN), and the European VLBI Network (EVN) at 5\,GHz have been used to study the radio structure of the source in order to determine the nature of the nuclear components and to determine the presence of radio cores. The e-MERLIN image of 3C 316 reveals a collimated coherent east-west emission structure with a total extent of about 3 kpc. The EVN image shows seven discrete compact knots on an S-shaped line. However, none of these knots could be unambiguously identified as an AGN core. The observations suggest that the majority of the radio structure belongs to a powerful radio AGN, whose physical size and radio spectrum classify it as a compact steep-spectrum source. Given the complex radio structure with radio blobs and knots, the possibility of a kpc-separation dual AGN cannot be excluded if the secondary is either a naked core or radio quiet.Comment: 12 pages, 3 figures, 2 tables. Accepted for publication in the MNRA
    • …
    corecore