133 research outputs found

    Right-Handed Quark Mixings in Minimal Left-Right Symmetric Model with General CP Violation

    Full text link
    We present a systematic approach to solve analytically for the right-handed quark mixings in the minimal left-right symmetric model which generally has both explicit and spontaneous CP violations. The leading-order result has the same hierarchical structure as the left-handed CKM mixing, but with additional CP phases originating from a spontaneous CP-violating phase in the Higgs vev. We explore the phenomenology entailed by the new right-handed mixing matrix, particularly the bounds on the mass of WRW_R and the CP phase of the Higgs vev.Comment: 8 pages, one postscript figure include

    Constraining Right-Handed Scale Through Kaon Mixing in SUSY Left-Right Model

    Full text link
    We study flavor-changing neutral current and CP violations in the minimal supersymmetric left-right model. We calculate the beyond-standard-model contributions to the neutral kaon mixing ΔMK\Delta M_K and ϵ\epsilon, and find possible to have a numerical cancelation between the contributions from the right-handed gauge boson and supersymmetric box diagram. With the cancelation, the right-handed WW-boson mass scale can be lowered to about 2 TeV, well within the search limit of LHC.Comment: 12 pages, new figures adde

    GPS/GLONASS carrier phase elevation-dependent stochastic modelling estimation and its application in bridge monitoring

    Get PDF
    The Global Positioning System (GPS) based monitoring technology has been recognised as an essential tool in the long-span bridge health monitoring throughout the world in recent years. However, the high observation noise is still a big problem that limits the high precision displacement extraction and vibration response detection. To solve this problem, GPS double-difference model and many other specific function models have been developed to eliminate systematic errors e.g. unmodeled atmospheric delays, multipath effect and hardware delays. However, relatively less attention has been given to the noise reduction in the deformation monitoring area. In this paper, we first proposed a new carrier phase elevation-dependent precision estimation method with Geometry-Free (GF) and Melbourne-Wü bbena (MW) linear combinations, which is appropriate to regardless of Code Division Multiple Access (CDMA) system (GPS) or Frequency Division Multiple Access (FDMA) system (GLONASS). Then, the method is used to estimate the receiver internal noise and the realistic GNSS stochastic model with a group of zero-baselines and short-baselines (served for the GNSS and Earth Observation for Structural Health Monitoring of Bridges (GeoSHM) project), and to demonstrate their impacts on the positioning. At last, the contribution of integration of GPS and GLONASS is introduced to see the performance of noise reduction with multi-GNSS. The results show that the higher level receiver internal noise in cost effective receivers has less influences on the short-baseline data processing. The high noise effects introduced by the low elevation satellite and the geometry variation caused by rising and dropping satellites, can be reduced by 10–20% with the refined carrier phase elevation-dependent stochastic model. Furthermore, based on observations from GPS and GLONASS with the refined stochastic model, the noise can be reduced by 30–40%, and the spurious signals in the real-life bridge displacements tend to be completely eliminated

    Precise Point Positioning to support an automatic entering of a waterway lock

    Get PDF
    Inland waterway transport is the transport mode with the lowest CO2 emission per tonne kilometre. However, there is a substantial potential for modal shift from road and rail to inland vessel transport. The increase of the grade of automation or even autonomous inland vessels could be a key enabler for this modal shift. By far the most challenging phase of inland navigation is the passing of waterway locks. Here, typically a ship with the dimension of 11.4 x 100 m has to enter a 12 m wide lock chamber, leaving just a few dm space on each side of the vessel. In order to support the automation of this manoeuvre, very accurate position, heading, turn rate and velocity information is required. Within the project SCIPPPER (2018-2022) such a driver assistant function has been developed. The idea was using the absolute Precise Point Positioning (PPP) instead of Real Time Kinematic (RTK) to achieve the required 10 cm horizontal accuracy. The reason was an expected reduction in the amount of PPP correction data and a significantly enlarged service area. Both facts would enable the correction data transmission over the VHF Data Exchange System (VDES) - the next generation of the Automatic Identification System (AIS). While a stable mobile internet connection is unfortunately not available at all inland waterways, currently AIS Base stations are being operated on all main inland waterways in Germany. By upgrading the AIS base stations to VDES stations, in the future all inland vessels on the main waterways could potentially benefit from the highly accurate positioning service. Besides the high accuracy, the reduction of the convergence time is one of the key challenges for the application of PPP for inland vessels. In order to shorten the PPP convergence time, we were using an SSR (state space representation) correction service from a regional network including not only global corrections like satellite clock, orbit, code and phase biases but also regional ionospheric and tropospheric corrections. These corrections were provided by using the GNSS station network of SAPOS (Satelliten Positionierungsdienst der deutschen Landesvermessung). In cooperation with the Working Committee of the Surveying and Mapping Agencies of the States of the Federal Republic of Germany (AdV) and Geo++, an SSR correction data stream has been prepared and optimised for the inland vessel application. By separating the corrections into high (5s update) and low rate (30s update) corrections, an average data rate of about 0.3 kbits/s was achieved, which is a significant reduction compared to RTK correction (4-5 kbit/s). In the paper the details of our real time PPP positioning solver with ambiguity resolution based on GPS and GALILEO observations will be given. Furthermore, the results of static as well as dynamic measurement campaigns in challenging inland waterway scenarios will be presented. In the final demonstration of the SCIPPPER project an 82 m long vessel automatically entered a waterway lock by using PPP as the main source for global positioning of the vessel. While the paper focuses on the positioning part, also a main overview of the complete driver assistant function will be presented

    From RTK to PPP‑RTK: towards real‑time kinematic precise point positioning to support autonomous driving of inland waterway vessels

    Get PDF
    PPP-RTK is Precise Point Positioning (PPP) using corrections from a ground reference network, which enables single receiver users with integer ambiguity resolution thereby improving its performance. However, most of the PPP-RTK studies are investigated and evaluated in a static situation or a post-processing mode because of the complexity of implementation in real-time practical applications. Moreover, although PPP-RTK achieves a faster convergence than PPP, it typically needs 30 s or even longer to derive high-accuracy results. We have implemented a real-time PPP-RTK approach based on undifferenced observations and State-Space Representation corrections with a fast convergence of less than 30 s to support autonomous driving of inland waterway vessels. The PPP-RTK performances and their feasibility to support autonomous driving have been evaluated and validated in a real-time inland waterway navigation. It proves the PPP-RTK approach can realize a precise positioning of less than 10 cm in horizontal with a rapid convergence. The convergence time is within 10 s after a normal bridge passing and less than 30 s after a complicated bridge passing. Moreover, the PPP-RTK approach can be extended to outside of the GNSS station network. Even if the location is 100 km away from the border of the GNSS station network, the PPP-RTK convergence time after a bridge passing is also normally less than 30 s. We have realized the first automated entry into a waterway lock for a vessel supported by PPP-RTK and taken the first step toward autonomous driving of inland vessels based on PPP-RTK

    Real-Time Multi-GNSS Precise Point Positioning with Instant Convergence for Inland Waterway Navigation

    Get PDF
    Precise Point Positioning (PPP) has been highly recommended to be used in the future for precise navigation, and is very suitable for the inland waterway navigation. PPP has great advantages than RTK except for a relatively long convergence time of several minutes or even more than ten minutes without using atmospheric corrections. With the goal of achieving PPP accuracy at centimeters level in horizontal instantly, and supporting by the State Space Representation (SSR) corrections we developed a real time PPP algorithm by fully utilizing GPS and Galileo observations. A measurement campaign was conducted to validate the PPP performance for inland waterway navigation, especially the PPP convergence time and performance when passing a waterway lock or bridges. Finally, the PPP accuracy could be less than 10 cm in horizontal within several seconds or even at the first epoch when the GNSS satellites are evenly distributed in an open sky area. In addition, it can also achieve a fast reinitialization within several seconds after the vessel passing over a waterway lock or a bridge

    PPP-RTK with Rapid Convergence Based on SSR Corrections and Its Application in Transportation

    Get PDF
    Real-time Kinematic (RTK) positioning provides centimeter-level positioning accuracy within several seconds, but it has to rely on a nearby base station. Although Precise Point Positioning (PPP) supplies precise positions with one receiver, its convergence time takes several tens of minutes, which makes PPP not well suited for real-time kinematic applications where a rapid convergence is required. PPP-RTK integrates the benefits of PPP and RTK, which actually is PPP augmented by a ground GNSS network. The satellite orbit, clock offsets, signal biases, ionospheric and tropospheric corrections are determined based on this GNSS network, modeled as state space information and transmitted to PPP users. By applying these State Space Representation (SSR) corrections, a real-time kinematic PPP-RTK approach is developed and implemented, which can instantly resolve the ambiguities to integers and realize rapid convergence. In a static scenario, it realized an instant ambiguity resolution and a rapid convergence within 2 s in more than 90% of 120 hourly sessions. The PPP-RTK has been applied and evaluated in a kinematic scenario on the highway. The horizontal positioning errors are almost lower than 0.1 m except for the time of passing through bridges. After passing bridges, the PPP-RTK successfully resolved ambiguities within 2 s in 90.6% of the cases and achieved convergence in horizontal within 5 s in more than 90% of the cases. The PPP-RTK with a precision of 0.1 m and rapid convergence of several seconds benefits the precise navigation of automobile on the highway, which will support the development of autonomous driving in futur

    Fault diagnosis of aero-hydraulic pump based on casing vibration signal

    Get PDF
    To effectively extract the characteristics of weak imbalance fault of aircraft hydraulic pump, autocorrelation function (AF) is combined with wavelet transform (AFWT) instead of threshold denoising. Meanwhile, power ratio (PR) was obtained by extracted characteristic frequency and applied to the identification of weak imbalance fault. A contrastive analysis was conducted among different signals, including acceleration and displacement signal. The results indicate that displacement signal, rather than acceleration signal, can effectively identify a weak imbalance fault

    Epidemiological study of scarlet fever in Shenyang City, China

    Get PDF
    AimsTo depict the Spatiotemporal epidemiological characteristics of the incidence of scarlet fever in Shenyang, China, in 2018 so as to provide the scientific basis for effective strategies of scarlet control and prevention.Methods Excel 2010 was used to demonstrate the temporal distribution at the month level and ArcGIS10.3 was used to demonstrate the spatial distribution at the district/county level. Moran’s autocorrelation coefficient was used to examine the spatial autocorrelation and the Getis-Ord statistic was used to determine the hot-spot areas of scarlet fever.Results A total of 2,314 scarlet fever cases were reported in Shenyang in 2018 with an annual incidence of 31.24 per 100,000. The incidence among males was higher than that amongfemales (X2=95.013, P≤0.001). A vast majority of the cases (96.89%) were among children aged 3 to 11 years. The highest incidence was 625.34/100,000 in children aged 5–9 years. There are two seasonal peaks occurred in June (Summer-peak) and in December (Winter-peak) in 2018. The incidence of scarlet fever in urban areas was significantly higher than that in rural areas(X2=514.115, P≤0.001). The incidence of scarlet fever was randomly distributed in Shenyang. There are hot-spots areas located in seven districts.ConclusionUrban areas are the hot spots of scarlet fever and joint prevention and control measures between districts should be applied. Children in the kindergartens and the primary school students are the main population of scarlet fever and the time distribution of scarlet fever is highly consistent with their school and vacation time. It is suggested that measure for prevention and control of scarlet fever in kindergartens and primary schools is the key to control the epidemic of scarlet fever

    High Definition Mapping for Inland Waterways: Techniques, Challenges and Prospects

    Get PDF
    Inland waterway transport (IWT) is an efficient way of mass good transportation with low energy consumption and reasonable ecological impact. As for other transport systems, there is a need for reliable advanced driver-assistance functions and increased autonomy. In this regard, High Definition (HD) Maps play a role by enhancing vessels’ localisation and perception capabilities. Obtaining HD Maps is an important step towards the ongoing digitalisation of water-based transport and forms the basis for assistant systems to captains of inland vessels or even higher automated ships. This work discusses the workflow for HD map generation by using vessels as information platforms (i.e., by having precise localisation and environment-detecting perception capabilities). An architecture for HD map generation from vessels provided with geodetic equipment for precise localisation and environment-detecting perception is presented. An overview on standard techniques for HD mapping within the automobile and robotics domain are discussed, as well as the particular challenges and needs present for water-based applications. Finally, the conceptual use and appropriate data exchange of HD Maps are drafted
    • …
    corecore