46,102 research outputs found

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Time-resolved characterization of a pulsed discharge in a stationary bubble

    Get PDF
    In recent years, plasma generation in water has been proposed for the application of water treatment. The process efficiency is believed to be improved by the introduction of bubbles in the plasma active region. For further optimization, the initiating and developmental mechanisms of plasma inside bubbles need to be understood to a greater extent. In order to meet this necessity, we investigated pulsed electrical discharge inside a stationary bubble in water. This paper deals with the evolution of the discharge and of the bubble shape during discharge, investigated by electrical characterization and fast imaging. Only several microseconds after the application of the voltage pulse, plasma light is observed. Different phases are observed during plasma formation. The plasma is strongest at the bubble surface, causing the surrounding water to evaporate. This leads to both the formation of propagating streamers into the water and the expansion and collapse of the bubble. These observations show that plasma inside a bubble has the strongest activity at the bubble surface, making it attractive for water treatment

    Non-Markovian effect on the quantum discord

    Full text link
    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. It implies that the quantum discord is more useful than the entanglement to describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure

    The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of <em>Xanthomonas campestris</em>

    Get PDF
    Summary: A cell-cell signalling system mediated by the fatty acid signal DSF controls the virulence of Xanthomonas campestris pv. campestris (Xcc) to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon the sensor RpfC and regulator RpfG. Detailed analyses of the regulatory roles of different Rpf proteins have suggested the occurrence of further sensors for DSF. Here we have used a mutagenesis approach coupled with high-resolution transcriptional analysis to identify XC_2579 (RpfS) as a second sensor for DSF in Xcc. RpfS is a complex sensor kinase predicted to have multiple Per/Arnt/Sim (PAS) domains, a histidine kinase domain and a C-terminal receiver (REC) domain. Isothermal calorimetry showed that DSF bound to the isolated N-terminal PAS domain with a Kd of 1.4ÎŒM. RpfS controlled expression of a sub-set of genes distinct from those controlled by RpfC to include genes involved in type IV secretion and chemotaxis. Mutation of XC_2579 was associated with a reduction in virulence of Xcc to Chinese Radish when assayed by leaf spraying but not by leaf inoculation, suggesting a role for RpfS-controlled factors in the epiphytic phase of the disease cycle.</p

    Environment-dependent dissipation in quantum Brownian motion

    Get PDF
    The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic environments, without performing the Markovian approximation. Our results allow to establish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermalization for different environments sheds light on the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph

    Microlensing Characterization of Wide-Separation Planets

    Full text link
    With their excellent photometric precision and dramatic increase in monitoring frequency, future microlensing survey experiments are expected to be sensitive to very short time-scale, isolated events caused by free-floating and wide-separation planets with mass as low as a few lunar masses. We estimate the probability of measuring the Einstein radius \theta_E for bound and free-floating planets. We carry out detailed simulations of the planetary events expected in next-generation surveys and estimate the resulting uncertainty in \theta_E for these events. We show that, for main-sequence sources and Jupiter-mass planets, the caustic structure of wide-separation planets with projected separations of < 20 AU substantially increases the probability of measuring the dimensionless source size and thus determining \theta_E compared to the case of unbound planets. In this limit where the source is much smaller than the caustic, the effective cross-section to measure \theta_E to 10% is ~25% larger than the full width of the caustic. Measurement of the lens parallax is possible for low-mass planetary events by combined observations from the ground and a satellite located in an L2 orbit; this would complete the mass measurements for such wide-separation planets. Finally, short-duration events caused by bound planets can be routinely distinguished from those caused by free-floating planets for planet-star separations < 20 AU from either the deviations due to the planetary caustic or (more often) the low-amplitude bump from the magnification due to the parent star.Comment: 10 pages including 7 figures. ApJ, in pres

    Electronic and optical properties of LiBC

    Full text link
    LiBC, a semiconducting ternary borocarbide constituted of the lightest elements only, has been synthesized and characterized by x-ray powder diffraction, dielectric spectroscopy, and conductivity measurements. Utilizing an infrared microscope the phonon spectrum has been investigated in single crystals. The in-plane B-C stretching mode has been detected at 150 meV, noticeably higher than in AlB2, a non-superconducting isostructural analog of MgB2. It is this stretching mode, which reveals a strong electron-phonon coupling in MgB2, driving it into a superconducting state below 40 K, and is believed to mediate predicted high-temperature superconductivity in hole-doped LiBC [H. Rosner, A. Kitaigorodsky, and W. E. Pickett, Phys. Rev. Lett. 88, 127001 (2002)].Comment: 4 pages, 4 figure

    Imprints of the nuclear symmetry energy on gravitational waves from the axial w-modes of neutron stars

    Full text link
    The eigen-frequencies of the axial w-modes of oscillating neutron stars are studied using the continued fraction method with an Equation of State (EOS) partially constrained by the recent terrestrial nuclear laboratory data. It is shown that the density dependence of the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) affects significantly both the frequencies and the damping times of these modes. Besides confirming the previously found universal behavior of the mass-scaled eigen-frequencies as functions of the compactness of neutron stars, we explored several alternative universal scaling functions. Moreover, the wIIw_{II}-mode is found to exist only for neutron stars having a compactness of M/R≄0.1078M/R\geq 0.1078 independent of the EOS used.Comment: Version appeared in Phys. Rev. C80, 025801 (2009
    • 

    corecore