19 research outputs found

    Quantum dots for hybrid energy harvesting: from integration to piezo-phototronics

    Get PDF
    Energy harvesting, which converts wasted environmental energy into electricity by utilizing various physical effects, hasattracted tremendous research interests as is one of the key technologies to realize advanced electronics in the future. In this review, we introduce recent progress in the field of hybrid energy harvesting technology. In particular, we focus on a quantum dots (QD)‐based hybrid energy harvesting device. Attributed to fascinating material properties that QD possess, employment of QDs into hybrid energy harvesting has shown great potential for independent and sustainable energy supply.First, an integration of a QD solar cell into a mechanical energy harvester is discussed to harness different types of environmental energy sources simultaneously. Second, a comprehensive explanation of a piezotronic and piezo‐phototronic effect is provided, which is followed by QD‐based piezo‐phototronic applications. Finally, we summarize recent progress that has been made in energy harvesting technology involving a photovoltaic and piezo/triboelectric effec

    Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS2/Quantum Dot Phototransistors.

    Get PDF
    Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007−2013)/ERC Grant Agreement no. 340538. This work was also supported by the National Research Foundation of Korea (NRF) (2015M2A2A6A02045252) and Samsung Global Research Outreach (Samsung GRO) program. In addition, S.M.M. would like to thank The Royal Society for financial support

    Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices

    Get PDF
    Funding Information: This work was supported by the European Commission (H2020, 1D-NEON, grant agreement ID: 685758). J.M.K. and L.G.O. acknowledge the support from the U.K. Research and Innovation (EPSRC, EP/P027628/1). We thank Y. Bernstein and J. Faulkner for helping with grammar check. Funding Information: Acknowledgments Funding:ThisworkwassupportedbytheEuropeanCommission(H2020,1D-NEON,grant agreementID:685758).J.M.K.andL.G.O.acknowledgethesupportfromtheU.K.Researchand Innovation(EPSRC,EP/P027628/1).W ethankY .BernsteinandJ.Faulknerforhelpingwith grammarcheck.Authorcontributions:S.L.andJ.M.K.conceivedtheproject.S.L.,L.G.O.,P .B., R.Martins,andJ.M.K.supervisedtheproject.S.L.andH.L.developedF-PD.S.L.,Y .-W .L., G.-H.A., D.-W .S., J.I.S.,andS.C.developedF-SC.C.L.F ., A.S.,R.I.,P .B., andR.Martinsdevelopedfiber transistor.S.L.,H.L.,andS.C.developedF-LED.ThefiberdeviceswereevaluatedbyS.L.,H.W .C., D.-W .S., H.L.,S.J.,S.D.H.,S.Y .B., S.Z.,W .H.-C., Y .-H.S., X.-B.F ., T .H.L., J.-W .J., andY .K. The developmentofweavingprocesswasconductedbyS.L.,H.W .C., F .M.M., P .J., andV .G.C. Thelaser interconnectionwasdevelopedbyS.L.,H.W .C., K.U.,M.E.,andM.S.Thetextiledemonstrations werecharacterizedbyS.L.,H.W .C., D.-W .S., J.Y ., S.S.,U.E.,S.N.,A.C.,A.M.,R.Momentè,J.G.,N.D., S.M.,C.-H.K.,M.L.,A.N.,D.J.,M.C.,andY .C. ThismanuscriptwaswrittenbyS.L.andJ.M.K.and reviewed by H.W .C., D.-W .S., M.C.,L.G.O., P .B., E.F ., and G.A.J.A. All authors discussed the results andcommentedonthemanuscript.Competinginterests:Theauthorsdeclarethattheyhave nocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatethe conclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials. Publisher Copyright: Copyright © 2023 The Authors, some rights reserved.An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.publishersversionpublishe

    Synthesis of Perforated Polygonal Cobalt Oxides usinga Carbon Nanofiber Template

    No full text

    Quantum Dots for Hybrid Energy Harvesting: From Integration to Piezo‐Phototronics

    No full text
    Energy harvesting, which converts wasted environmental energy into electricity by utilizing various physical effects, hasattracted tremendous research interests as is one of the key technologies to realize advanced electronics in the future. In this review, we introduce recent progress in the field of hybrid energy harvesting technology. In particular, we focus on a quantum dots (QD)‐based hybrid energy harvesting device. Attributed to fascinating material properties that QD possess, employment of QDs into hybrid energy harvesting has shown great potential for independent and sustainable energy supply.First, an integration of a QD solar cell into a mechanical energy harvester is discussed to harness different types of environmental energy sources simultaneously. Second, a comprehensive explanation of a piezotronic and piezo‐phototronic effect is provided, which is followed by QD‐based piezo‐phototronic applications. Finally, we summarize recent progress that has been made in energy harvesting technology involving a photovoltaic and piezo/triboelectric effec

    Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage

    No full text
    Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly­(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g<sup>–1</sup> at 100 mA g<sup>–1</sup> after 100 cycles), superb high-rate performance (969 mA h g<sup>–1</sup> at 2000 mA g<sup>–1</sup>), and outstanding ultrafast cycling stability (532 mA h g<sup>–1</sup> at 2000 mA g<sup>–1</sup> after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling

    Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage

    No full text
    Carbon and metal oxide composites have received considerable attention as anode materials for Li-ion batteries (LIBs) owing to their excellent cycling stability and high specific capacity based on the chemical and physical stability of carbon and the high theoretical specific capacity of metal oxides. However, efforts to obtain ultrafast cycling stability in carbon and metal oxide composites at high current density for practical applications still face important challenges because of the longer Li-ion diffusion pathway, which leads to poor ultrafast performance during cycling. Here, tunneled mesoporous carbon nanofibers with embedded ZnO nanoparticles (TMCNF/ZnO) are synthesized by electrospinning, carbonization, and postcalcination. The optimized TMCNF/ZnO shows improved electrochemical performance, delivering outstanding ultrafast cycling stability, indicating a higher specific capacity than previously reported ZnO-based anode materials in LIBs. Therefore, the unique architecture of TMCNF/ZnO has potential for use as an anode material in ultrafast LIBs

    Carbon-Encapsulated Hollow Porous Vanadium-Oxide Nanofibers for Improved Lithium Storage Properties

    No full text
    Carbon-encapsulated hollow porous vanadium-oxide (C/HPV<sub>2</sub>O<sub>5</sub>) nanofibers have been fabricated using electrospinning and postcalcination. By optimized postcalcination of vanadium-nitride and carbon-nanofiber composites at 400 °C for 30 min, we synthesized a unique architecture electrode with interior void spaces and well-defined pores as well as a uniform carbon layer on the V<sub>2</sub>O<sub>5</sub> nanofiber surface. The optimized C/HPV<sub>2</sub>O<sub>5</sub> electrode postcalcined at 400 °C for 30 min showed improved lithium storage properties with high specific discharge capacities, excellent cycling durability (241 mA h g<sup>–1</sup> at 100 cycles), and improved high-rate performance (155 mA h g<sup>–1</sup> at 1000 mA g<sup>–1</sup>), which is the highest performance in comparison with previously reported V<sub>2</sub>O<sub>5</sub>-based cathode materials. The improved electrochemical feature is due to the attractive properties of the carbon-encapsulated hollow porous structure: (I) excellent cycling durability with high specific capacity relative to the adoption of carbon encapsulation as a physical buffer layer and the effective accommodation of volume changes due to the hollow porous structure, (II) improved high-rate performance because of a shorter Li-ion diffusion pathway resulting from interior void spaces and well-defined pores at the surface. This unique electrode structure can potentially provide new cathode materials for high-performance lithium-ion batteries
    corecore