9 research outputs found
Subtle Recognition of 14-Base Pair DNA Sequences via Threading Polyintercalation
ABSTRACT: Small molecules that bind DNA in a sequence-specific manner could act as antibiotic, antiviral, or anticancer agents because of their potential ability to manipulate gene expression. Our laboratory has developed threading poly-intercalators based on 1,4,5,8-naphthalene diimide (NDI) units connected in a head-to-tail fashion by flexible peptide linkers. Previously, a threading tetraintercalator composed of alternating minorāmajorāminor groove-binding modules was shown to bind specifically to a 14 bp DNA sequence with a dissociation half-life of 16 days [Holman, G. G., et al. (2011) Nat. Chem. 3, 875ā881]. Herein are described new NDI-based tetraintercalators with a different major groove-binding module and a reversed N to C directionality of one of the minor groove-binding modules. DNase I footprinting and kinetic analyses revealed that these new tetraintercalators are able to discriminate, by as much as 30-fold, 14 bp DNA binding sites that differ by 1 or 2 bp. Relative affinities were found to correlate strongly with dissociation rates, while overall C2 symmetry in the DNA-binding molecule appeared to contribute to enhanced association rates
Recommended from our members
Advances in DNA binding by threading polyintercalation
textChemistryAlthough molecules that bind DNA have the potential to modify gene expression, the reality of targeting DNA in a sequence-specific manner is still a problematic but worthwhile goal. The Iverson lab has been exploring DNA recognition through a motif known as threading polyintercalation based on connecting intercalating naphthalene diimide (NDI) units, which are molecules that insert themselves between DNA base pairs, together with peptide linkers. These polyintercalators interact with both DNA grooves by āthreadingā or winding through the DNA, like a snake might climb a ladder. Initially, two different bisintercalator modules with altered sequence specificities and different groove binding topologies were discovered and used to inspire the design of a hybrid NDI tetraintercalator. Surprisingly enough, this tetraintercalator bound sequence-specifically with a dissociation half-life of 16 days to its preferred 14 bp site, a record at the time it was reported for a synthetic DNA-binding molecule. The work reported here expands on the capabilities of this modular threading polyintercalation motif. Chapter 2 describes the ability of a new hybrid NDI tetraintercalator, where the bisintercalator modules are connected together in a different way compared to the previously studied tetraintercalator, to subtly discriminate between similar binding sites. Chapter 3 offers a structural understanding, through NMR analysis, for the sequence recognition abilities of this new tetraintercalator. Chapter 4 analyzes the binding abilities of an un-optimized NDI octaintercalator and proposes how to approach the second-generation design of longer polyintercalators. Chapter 5 describes the optimization of the originally designed NDI tetraintercalator by serially lengthening one of the linkers to produce a tetraintercalator with a 57 day dissociation half-life from its 14 bp sequence, a new record for a synthetic DNA-binding molecule. Using the optimized linker in the context of an NDI hexaintercalator allows for binding to a 22 bp designed site, a record for a synthetic non-nucleic acid molecule. Chapter 6 recounts a focused library screening to search for bisintercalators with new sequence specificities. These efforts have laid the groundwork to progress toward studies aimed at understanding how these molecules might function to prevent transcription in a sequence-dependent manner in vivo.Chemistr
Threading Polyintercalators with Extremely Slow Dissociation Rates and Extended DNA Binding Sites
The
development of small molecules that bind DNA sequence specifically
has the potential to modulate gene expression in a general way. One
mode of DNA binding is intercalation, or the insertion of molecules
between DNA base pairs. We have developed a modular polyintercalation
system in which intercalating naphthalene diimide (NDI) units are
connected by flexible linkers that alternate between the minor and
major grooves of DNA when bound. We recently reported a threading
tetraintercalator with a dissociation half-life of 16 days, the longest
reported to date, from its preferred 14 bp binding site. Herein, three
new tetraintercalator derivatives were synthesized with one, two,
and three additional methylene units in the central major groove-binding
linker. These molecules displayed dissociation half-lives of 57, 27,
and 18 days, respectively, from the 14 bp site. The optimal major
groove-binding linker was used in the design of an NDI hexaintercalator
that was analyzed by gel-shift assays, DNase I footprinting, and UVāvis
spectroscopy. The hexaintercalator bound its entire 22 bp binding
site, the longest reported specific binding site for a synthetic,
non-nucleic acid-based DNA binding molecule, but with a significantly
faster dissociation rate compared to the tetraintercalators
Subtle Recognition of 14-Base Pair DNA Sequences via Threading Polyintercalation
Small molecules that bind DNA in a sequence-specific
manner could
act as antibiotic, antiviral, or anticancer agents because of their
potential ability to manipulate gene expression. Our laboratory has
developed threading polyintercalators based on 1,4,5,8-naphthalene
diimide (NDI) units connected in a head-to-tail fashion by flexible
peptide linkers. Previously, a threading tetraintercalator composed
of alternating minorāmajorāminor groove-binding modules
was shown to bind specifically to a 14 bp DNA sequence with a dissociation
half-life of 16 days [Holman, G. G., et al. (2011) <i>Nat. Chem.
3</i>, 875ā881]. Herein are described new NDI-based tetraintercalators
with a different major groove-binding module and a reversed N to C
directionality of one of the minor groove-binding modules. DNase I
footprinting and kinetic analyses revealed that these new tetraintercalators
are able to discriminate, by as much as 30-fold, 14 bp DNA binding
sites that differ by 1 or 2 bp. Relative affinities were found to
correlate strongly with dissociation rates, while overall <i>C</i><sub>2</sub> symmetry in the DNA-binding molecule appeared
to contribute to enhanced association rates
CCDC 695552: Experimental Crystal Structure Determination
Related Article: C.Potter, A.M.R.Smith, C.R.Metz, W.T.Pennington, D.G.VanDerveer, C.F.Beam|2010|J.Chem.Cryst.|40|541|doi:10.1007/s10870-010-9693-y,An entry from the Cambridge Structural Database, the worldās repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
CCDC 695551: Experimental Crystal Structure Determination
Related Article: C.Potter, A.M.R.Smith, C.R.Metz, W.T.Pennington, D.G.VanDerveer, C.F.Beam|2010|J.Chem.Cryst.|40|541|doi:10.1007/s10870-010-9693-y,An entry from the Cambridge Structural Database, the worldās repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent InĀ Vivo Genome Editing
Summary: The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12Ā months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of inĀ vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of inĀ vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. : Finn etĀ al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12Ā months, despite the transient nature of the delivery system and the editing components. Keywords: CRISPR, Cas9, genome editing, LNP, lipid nanoparticle, TTR, CRISPR/Cas9, liver delivery, gene therapy, sgRN
Science goals and mission architecture of the Europa Lander mission concept
Ā© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hand, K., Phillips, C., Murray, A., Garvin, J., Maize, E., Gibbs, R., Reeves, G., San Martin, A., Tan-Wang, G., Krajewski, J., Hurst, K., Crum, R., Kennedy, B., McElrath, T., Gallon, J., Sabahi, D., Thurman, S., Goldstein, B., Estabrook, P., Lee, S. W., Dooley, J. A., Brinckerhoff, W. B., Edgett, K. S., German, C. R., Hoehler, T. M., Hƶrst, S. M., Lunine, J. I., Paranicas, C., Nealson, K., Smith, D. E., Templeton, A. S., Russell, M. J., Schmidt, B., Christner, B., Ehlmann, B., Hayes, A., Rhoden, A., Willis, P., Yingst, R. A., Craft, K., Cameron, M. E., Nordheim, T., Pitesky, J., Scully, J., Hofgartner, J., Sell, S. W., Barltrop, K. J., Izraelevitz, J., Brandon, E. J., Seong, J., Jones, J.-P., Pasalic, J., Billings, K. J., Ruiz, J. P., Bugga, R. V., Graham, D., Arenas, L. A., Takeyama, D., Drummond, M., Aghazarian, H., Andersen, A. J., Andersen, K. B., Anderson, E. W., Babuscia, A., Backes, P. G., Bailey, E. S., Balentine, D., Ballard, C. G., Berisford, D. F., Bhandari, P., Blackwood, K., Bolotin, G. S., Bovre, E. A., Bowkett, J., Boykins, K. T., Bramble, M. S., Brice, T. M., Briggs, P., Brinkman, A. P., Brooks, S. M., Buffington, B. B., Burns, B., Cable, M. L., Campagnola, S., Cangahuala, L. A., Carr, G. A., Casani, J. R., Chahat, N. E., Chamberlain-Simon, B. K., Cheng, Y., Chien, S. A., Cook, B. T., Cooper, M., DiNicola, M., Clement, B., Dean, Z., Cullimore, E. A., Curtis, A. G., Croix, J-P. de la, Pasquale, P. Di, Dodd, E. M., Dubord, L. A., Edlund, J. A., Ellyin, R., Emanuel, B., Foster, J. T., Ganino, A. J., Garner, G. J., Gibson, M. T., Gildner, M., Glazebrook, K. J., Greco, M. E., Green, W. M., Hatch, S. J., Hetzel, M. M., Hoey, W. A., Hofmann, A. E., Ionasescu, R., Jain, A., Jasper, J. D., Johannesen, J. R., Johnson, G. K., Jun, I., Katake, A. B., Kim-Castet, S. Y., Kim, D. I., Kim, W., Klonicki, E. F., Kobeissi, B., Kobie, B. D., Kochocki, J., Kokorowski, M., Kosberg, J. A., Kriechbaum, K., Kulkarni, T. P., Lam, R. L., Landau, D. F., Lattimore, M. A., Laubach, S. L., Lawler, C. R., Lim, G., Lin, J. Y., Litwin, T. E., Lo, M. W., Logan, C. A., Maghasoudi, E., Mandrake, L., Marchetti, Y., Marteau, E., Maxwell, K. A., Namee, J. B. Mc, Mcintyre, O., Meacham, M., Melko, J. P., Mueller, J., Muliere, D. A., Mysore, A., Nash, J., Ono, H., Parker, J. M., Perkins, R. C., Petropoulos, A. E., Gaut, A., Gomez, M. Y. Piette, Casillas, R. P., Preudhomme, M., Pyrzak, G., Rapinchuk, J., Ratliff, J. M., Ray, T. L., Roberts, E. T., Roffo, K., Roth, D. C., Russino, J. A., Schmidt, T. M., Schoppers, M. J., Senent, J. S., Serricchio, F., Sheldon, D. J., Shiraishi, L. R., Shirvanian, J., Siegel, K. J., Singh, G., Sirota, A. R., Skulsky, E. D., Stehly, J. S., Strange, N. J., Stevens, S. U., Sunada, E. T., Tepsuporn, S. P., Tosi, L. P. C., Trawny, N., Uchenik, I., Verma, V., Volpe, R. A., Wagner, C. T., Wang, D., Willson, R. G., Wolff, J. L., Wong, A. T., Zimmer, A. K., Sukhatme, K. G., Bago, K. A., Chen, Y., Deardorff, A. M., Kuch, R. S., Lim, C., Syvertson, M. L., Arakaki, G. A., Avila, A., DeBruin, K. J., Frick, A., Harris, J. R., Heverly, M. C., Kawata, J. M., Kim, S.-K., Kipp, D. M., Murphy, J., Smith, M. W., Spaulding, M. D., Thakker, R., Warner, N. Z., Yahnker, C. R., Young, M. E., Magner, T., Adams, D., Bedini, P., Mehr, L., Sheldon, C., Vernon, S., Bailey, V., Briere, M., Butler, M., Davis, A., Ensor, S., Gannon, M., Haapala-Chalk, A., Hartka, T., Holdridge, M., Hong, A., Hunt, J., Iskow, J., Kahler, F., Murray, K., Napolillo, D., Norkus, M., Pfisterer, R., Porter, J., Roth, D., Schwartz, P., Wolfarth, L., Cardiff, E. H., Davis, A., Grob, E. W., Adam, J. R., Betts, E., Norwood, J., Heller, M. M., Voskuilen, T., Sakievich, P., Gray, L., Hansen, D. J., Irick, K. W., Hewson, J. C., Lamb, J., Stacy, S. C., Brotherton, C. M., Tappan, A. S., Benally, D., Thigpen, H., Ortiz, E., Sandoval, D., Ison, A. M., Warren, M., Stromberg, P. G., Thelen, P. M., Blasy, B., Nandy, P., Haddad, A. W., Trujillo, L. B., Wiseley, T. H., Bell, S. A., Teske, N. P., Post, C., Torres-Castro, L., Grosso, C. Wasiolek, M. Science goals and mission architecture of the Europa Lander mission concept. The Planetary Science Journal, 3(1), (2022): 22, https://doi.org/10.3847/psj/ac4493.Europa is a premier target for advancing both planetary science and astrobiology, as well as for opening a new window into the burgeoning field of comparative oceanography. The potentially habitable subsurface ocean of Europa may harbor life, and the globally young and comparatively thin ice shell of Europa may contain biosignatures that are readily accessible to a surface lander. Europa's icy shell also offers the opportunity to study tectonics and geologic cycles across a range of mechanisms and compositions. Here we detail the goals and mission architecture of the Europa Lander mission concept, as developed from 2015 through 2020. The science was developed by the 2016 Europa Lander Science Definition Team (SDT), and the mission architecture was developed by the preproject engineering team, in close collaboration with the SDT. In 2017 and 2018, the mission concept passed its mission concept review and delta-mission concept review, respectively. Since that time, the preproject has been advancing the technologies, and developing the hardware and software, needed to retire risks associated with technology, science, cost, and schedule.K.P.H., C.B.P., E.M., and all authors affiliated with the Jet Propulsion Laboratory carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (grant No. 80NM0018D0004). J.I.L. was the David Baltimore Distinguished Visiting Scientist during the preparation of the SDT report. JPL/Caltech2021