49 research outputs found

    Th1 versus Th17: Are T cell cytokines relevant in multiple sclerosis?

    Get PDF
    AbstractOur understanding of the pathophysiology of multiple sclerosis (MS) has evolved significantly over the past two decades as the fields of immunology and neurobiology provide new avenues of exploration into the cause and mechanism of the disease. It has been known for decades that T cells have different cytokine phenotypes, yet the cytokine phenotype of pathogenic T cells in MS is still an area of debate. In EAE, it appears that IFNγ and IL-17, produced by Th1 and Th17 cells respectively, are not the critical factor that determines T cell encephalitogenicity. However, there are molecules such as IL-23, T-bet and STAT4, that appear to be critical, yet it is unclear whether all these molecules contribute to a common, yet undefined pathway, or act in a synergistic manner which culminates in encephalitogenicity has still to be determined. Therefore, the focus of research on effector T cells in MS should focus on pathways upstream of the cytokines that define Th1 and Th17 cells, since downstream products, such as IFNγ and IL-17, probably are not critical determinants of whether an effector T cells is capable of trafficking to the CNS and inducing inflammatory demyelination

    Regulation of Immune Responses and Autoimmune Encephalomyelitis by PPARs

    Get PDF
    PPARs are members of the steroid hormone nuclear receptor superfamily and play an important role in regulating inflammation as well as lipid metabolism. The PPAR subfamily has been defined as PPARα, PPARβ/δ, and PPARγ, each with different ligands, target genes, and biological roles. PPARs regulate the expression of target inflammatory genes through mechanisms involving both transactivation and transrepression. The anti-inflammatory properties of PPAR agonists have led to the investigation of PPAR functions in regulating autoimmune encephalomyelitis. This paper will summarize some of the general mechanisms by which PPARs regulate inflammatory gene expression and focus on the recent advances of PPAR regulation of autoimmune encephalomyelitis

    PPAR Alpha Regulation of the Immune Response and Autoimmune Encephalomyelitis

    Get PDF
    PPARs are members of the steroid hormone nuclear receptor superfamily and play an important role in the regulation of lipid metabolism, energy balance, artherosclerosis and glucose control. Recent studies suggest that they play an important role in regulating inflammation. This review will focus on PPAR-α regulation of the immune response. We describe how PPAR-α regulates differentiation of T cells by transactivation and/or interaction with other transcription factors. Moreover, PPAR-α agonists have been shown to ameliorate experimental autoimmune encephalomyelitis (EAE) in mice, suggesting that they could provide a therapy for human autoimmune diseases such as multiple sclerosis

    Multiple Sclerosis Followed by Neuromyelitis Optica Spectrum Disorder: From the National Multiple Sclerosis Society Case Conference Proceedings

    Get PDF
    A woman presented at age 18 years with partial myelitis and diplopia and experienced multiple subsequent relapses. Her MRI demonstrated T2 abnormalities characteristic of multiple sclerosis (MS) (white matter ovoid lesions and Dawson fingers), and CSF demonstrated an elevated IgG index and oligoclonal bands restricted to the CSF. Diagnosed with clinically definite relapsing-remitting MS, she was treated with various MS disease-modifying therapies and eventually began experiencing secondary progression. At age 57 years, she developed an acute longitudinally extensive transverse myelitis and was found to have AQP4 antibodies by cell-based assay. Our analysis of the clinical course, radiographic findings, molecular diagnostic methods, and treatment response characteristics support the hypothesis that our patient most likely had 2 CNS inflammatory disorders: MS, which manifested as a teenager, and neuromyelitis optica spectrum disorder, which evolved in her sixth decade of life. This case emphasizes a key principle in neurology practice, which is to reconsider whether the original working diagnosis remains tenable, especially when confronted with evidence (clinical and/or paraclinical) that raises the possibility of a distinctively different disorder

    Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    Get PDF
    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation
    corecore