163 research outputs found

    How accurate are parental responses concerning their fourth-grade children's school-meal participation, and what is the relationship between children's body mass index and school-meal participation based on parental responses?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This article investigated (1) parental response accuracy of fourth-grade children's school-meal participation and whether accuracy differed by children's body mass index (BMI), sex, and race, and (2) the relationship between BMI and school-meal participation (based on parental responses).</p> <p>Methods</p> <p>Data were from four cross-sectional studies conducted from fall 1999 to spring 2003 with fourth-grade children from 13 schools total. Consent forms asked parents to report children's usual school-meal participation. As two studies' consent forms did not ask about lunch participation, complete data were available for breakfast on 1,496 children (51% Black; 49% boys) and for lunch on 785 children (46% Black; 48% boys). Researchers compiled nametag records (during meal observations) of meal participation on randomly selected days during children's fourth-grade school year for breakfast (average nametag days across studies: 7-35) and for lunch (average nametag days across studies: 4-10) and categorized participation as "usually" (≥ 50% of days) or "not usually" (< 50% of days). Weight and height were measured. Concerning parental response accuracy, marginal regression was used with agreement between parental responses and nametag records as the dependent variable; independent variables were BMI, age, sex, race, and study. Concerning a relationship between BMI and school-meal participation, marginal regression was used with BMI as the dependent variable; independent variables were breakfast participation, lunch participation, age, sex, race, and study.</p> <p>Results</p> <p>Concerning breakfast participation and lunch participation, 74% and 92% of parents provided accurate responses, respectively. Parental response accuracy was better for older children for breakfast and lunch participation, and for Black than White children for lunch participation. Usual school-meal participation was significantly related to children's BMI but in opposite directions -- positively for breakfast and inversely for lunch.</p> <p>Conclusions</p> <p>Parental response accuracy of children's school-meal participation was moderately high; however, disparate effects for children's age and race warrant caution when relying on parental responses. The BMI results, which showed a relationship between school-meal participation (based on parental responses) and childhood obesity, conflict with results from a recent article that used data from the same four studies and found no significant relationship when participation was based on nametag records compiled for meal observations.</p

    Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor R-modafinil on co-use of ethanol and nicotine in female P rats.

    Get PDF
    Rationale: Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use. Objectives: Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, 2-bottle choice); (2) nicotine alone (0.03 mg/kg/infusion, active vs. inactive lever); and (3) concurrent access to both EtOH and nicotine. Using this model, we examined the effects of (1) varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist with high affinity for the α4β2 subtype; (2) r-bPiDI, a subtype-selective antagonist at α6β2* nAChRs; and (3) (R)-modafinil, an atypical inhibitor of the dopamine transporter (DAT). Results: In Phases 1 and 2, pharmacologically relevant intake of EtOH and nicotine was achieved. In the concurrent access phase (Phase 3), EtOH consumption decreased while nicotine intake increased relative to Phases 1 and 2. For drug pretreatments, in the EtOH access phase (Phase 1), (R)-modafinil (100 mg/kg) decreased EtOH consumption, with no effect on water consumption. In the concurrent access phase, varenicline (3 mg/kg), r-bPiDI (20 mg/kg), and (R)-modafinil (100 mg/kg) decreased nicotine self-administration, but did not alter EtOH consumption, water consumption, or inactive lever pressing. Conclusions: These results indicate that therapeutics which may be useful for smoking cessation via selective inhibition of α4β2 or α6β2* nAChRs, or DAT inhibition, may not be sufficient to treat EtOH and nicotine co-use

    Report of the Topical Group on Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities for Snowmass 2021

    Full text link
    The mechanism(s) driving the early- and late-time accelerated expansion of the Universe represent one of the most compelling mysteries in fundamental physics today. The path to understanding the causes of early- and late-time acceleration depends on fully leveraging ongoing surveys, developing and demonstrating new technologies, and constructing and operating new instruments. This report presents a multi-faceted vision for the cosmic survey program in the 2030s and beyond that derives from these considerations. Cosmic surveys address a wide range of fundamental physics questions, and are thus a unique and powerful component of the HEP experimental portfolio.Comment: Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021); Topical Group Report for CF06 (Cosmic Frontier Topical Group on Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilitie

    A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer

    Get PDF
    BACKGROUND: Overexpression of the HER2 proto-oncogene in human cancer cells has been associated with a poor prognosis, and survival improves with therapy targeting the HER2 gene. Animal studies and protein modeling suggest that the Ile655Val polymorphism located in the transmembrane domain of the HER2 protein might influence breast cancer development by altering the efficiency of homodimerization. METHODS: To investigate this genetic polymorphism, incident cases of invasive breast cancer (N = 1,094) and population controls of a similar age (N = 976) were interviewed during 2001 to 2003 regarding their risk factors for breast cancer. By using DNA collected from buccal samples mailed by the participants, the HER2 Ile655Val polymorphism was evaluated with the Applied Biosystems allelic discrimination assay. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated by logistic regression adjusted for numerous breast cancer risk factors. Analysis was restricted to women with self-reported European descent. RESULTS: Prevalence of the Val/Val genotype was 5.6% in cases and 7.1% in controls. In comparison with the Ile/Ile genotype, the Ile/Val genotype was not significantly associated with breast cancer risk (OR 0.97, 95% CI 0.79 to 1.18), whereas the Val/Val genotype was associated with a reduced risk (OR 0.63, 95% CI 0.42 to 0.92). This inverse association seemed strongest in older women (OR 0.51, 95% CI 0.29 to 0.89 for women aged more than 55 years), women without a family history of breast cancer (OR 0.54, 95% CI 0.35 to 0.84), postmenopausal women with greater body mass index (OR 0.43, 95% CI 0.20 to 0.91 for a body mass index of 25.3 kg/m(2 )or more), and cases diagnosed with non-localized breast cancer (OR 0.49, 95% CI 0.26 to 0.90). CONCLUSION: Although results from our population-based case-control study show an inverse association between the HER2 Ile655Val polymorphism and risk of invasive breast cancer, most other studies of this single-nucleotide polymorphism suggest an overall null association. Any further study of this polymorphism should involve sample populations with complete risk factor information and sufficient power to evaluate gene-environment interactions between the HER2 polymorphism and factors such as age and family history of breast cancer

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Clinical and Economic Evaluation of a Proteomic Biomarker Preterm Birth Risk Predictor: Cost-Effectiveness Modeling of Prenatal Interventions Applied to Predicted Higher-Risk Pregnancies Within a Large and Diverse Cohort

    Get PDF
    Objectives: Preterm birth occurs in more than 10% of U.S. births and is the leading cause of U.S. neonatal deaths, with estimated annual costs exceeding $25 billion USD. Using real-world data, we modeled the potential clinical and economic utility of a prematurity-reduction program comprising screening in a racially and ethnically diverse population with a validated proteomic biomarker risk predictor, followed by case management with or without pharmacological treatment. Methods: The ACCORDANT microsimulation model used individual patient data from a prespecified, randomly selected sub-cohort (N = 847) of a multicenter, observational study of U.S. subjects receiving standard obstetric care with masked risk predictor assessment (TREETOP; NCT02787213). All subjects were included in three arms across 500 simulated trials: standard of care (SoC, control); risk predictor/case management comprising increased outreach, education and specialist care (RP-CM, active); and multimodal management (risk predictor/case management with pharmacological treatment) (RP-MM, active). In the active arms, only subjects stratified as higher risk by the predictor were modeled as receiving the intervention, whereas lower-risk subjects received standard care. Higher-risk subjects\u27 gestational ages at birth were shifted based on published efficacies, and dependent outcomes, calibrated using national datasets, were changed accordingly. Subjects otherwise retained their original TREETOP outcomes. Arms were compared using survival analysis for neonatal and maternal hospital length of stay, bootstrap intervals for neonatal cost, and Fisher\u27s exact test for neonatal morbidity/mortality (significance, p \u3c .05). Results: The model predicted improvements for all outcomes. RP-CM decreased neonatal and maternal hospital stay by 19% (p = .029) and 8.5% (p = .001), respectively; neonatal costs\u27 point estimate by 16% (p = .098); and moderate-to-severe neonatal morbidity/mortality by 29% (p = .025). RP-MM strengthened observed reductions and significance. Point estimates of benefit did not differ by race/ethnicity. Conclusions: Modeled evaluation of a biomarker-based test-and-treat strategy in a diverse population predicts clinically and economically meaningful improvements in neonatal and maternal outcomes

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore