4,313 research outputs found

    Improving WIC Retention in Vermont: Beneficiary attitudes toward co-location in medical homes

    Get PDF
    Introduction: The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) is a national program aimed at improving the nutrition and health of pregnant women and children. Those eligible for Vermont WIC include anyone pregnant or with children under 5 that has an income below 185% of federal poverty level or is enrolled in Vermont Medicaid. WIC has been shown to improve birth outcomes1, breast feeding rates2, infant growth and development, and consumption of important nutrients. Those enrolled in WIC report high levels of satisfaction Despite the benefits of WIC, retention rates of eligible families remain low. Studies have shown that mandatory bi-annual recertification appointments pose logistical problems. Rescheduling missed appointments and long waiting times at the WIC offices were also barriers. Other states have found that integration of WIC recertification appointments with the family’s primary care medical visits may improve retention. A limited scale co-localization of WIC and the medical home in Vermont showed some promise.https://scholarworks.uvm.edu/comphp_gallery/1213/thumbnail.jp

    Where it All Began

    Get PDF
    In celebration of the 20th issue of The Park Place Economist, this year\u27s Alumni Editors are thrilled to feature three outstanding alumni who made significant contributions to the successful publication of the very first issue

    Simulating the weak death of the neutron in a femtoscale universe with near-Exascale computing

    Full text link
    The fundamental particle theory called Quantum Chromodynamics (QCD) dictates everything about protons and neutrons, from their intrinsic properties to interactions that bind them into atomic nuclei. Quantities that cannot be fully resolved through experiment, such as the neutron lifetime (whose precise value is important for the existence of light-atomic elements that make the sun shine and life possible), may be understood through numerical solutions to QCD. We directly solve QCD using Lattice Gauge Theory and calculate nuclear observables such as neutron lifetime. We have developed an improved algorithm that exponentially decreases the time-to solution and applied it on the new CORAL supercomputers, Sierra and Summit. We use run-time autotuning to distribute GPU resources, achieving 20% performance at low node count. We also developed optimal application mapping through a job manager, which allows CPU and GPU jobs to be interleaved, yielding 15% of peak performance when deployed across large fractions of CORAL.Comment: 2018 Gordon Bell Finalist: 9 pages, 9 figures; v2: fixed 2 typos and appended acknowledgement

    Calm Multi-Baryon Operators

    Get PDF
    Outstanding problems in nuclear physics require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolators. Very early in Euclidean time this linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions. To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3) flavor symmetric point with m{\pi} \sim 800 MeV --- the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon) sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location) there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.Comment: 8 pages, 3 figures, proceedings for LATTICE 201

    An accurate calculation of the nucleon axial charge with lattice QCD

    Full text link
    We report on a lattice QCD calculation of the nucleon axial charge, gAg_A, using M\"{o}bius Domain-Wall fermions solved on the dynamical Nf=2+1+1N_f=2+1+1 HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, mπ{310,220,130}m_\pi\sim\{310,220,130\} MeV. Three lattice spacings (a{0.15,0.12,0.09}a\sim\{0.15,0.12,0.09\} fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the mπ220m_\pi\sim220 MeV, a0.12a\sim0.12 fm point, a dedicated volume study is performed with mπL{3.22,4.29,5.36}m_\pi L \sim \{3.22,4.29,5.36\}. Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of gAg_A with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is gA=1.278(21)(26)g_A = 1.278(21)(26), with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.Comment: 17 pages + 11 pages of references and appendices. 15 figures. Interested readers can download the Python analysis scripts and an hdf5 data file at https://github.com/callat-qcd/project_gA_v
    corecore