2,133 research outputs found
A priori convergence estimates for a rough Poisson-Dirichlet problem with natural vertical boundary conditions
Stents are medical devices designed to modify blood flow in aneurysm sacs, in
order to prevent their rupture. Some of them can be considered as a locally
periodic rough boundary. In order to approximate blood flow in arteries and
vessels of the cardio-vascular system containing stents, we use multi-scale
techniques to construct boundary layers and wall laws. Simplifying the flow we
turn to consider a 2-dimensional Poisson problem that conserves essential
features related to the rough boundary. Then, we investigate convergence of
boundary layer approximations and the corresponding wall laws in the case of
Neumann type boundary conditions at the inlet and outlet parts of the domain.
The difficulty comes from the fact that correctors, for the boundary layers
near the rough surface, may introduce error terms on the other portions of the
boundary. In order to correct these spurious oscillations, we introduce a
vertical boundary layer. Trough a careful study of its behavior, we prove
rigorously decay estimates. We then construct complete boundary layers that
respect the macroscopic boundary conditions. We also derive error estimates in
terms of the roughness size epsilon either for the full boundary layer
approximation and for the corresponding averaged wall law.Comment: Dedicated to Professor Giovanni Paolo Galdi 60' Birthda
Asymptotic description of solutions of the exterior Navier Stokes problem in a half space
We consider the problem of a body moving within an incompressible fluid at
constant speed parallel to a wall, in an otherwise unbounded domain. This
situation is modeled by the incompressible Navier-Stokes equations in an
exterior domain in a half space, with appropriate boundary conditions on the
wall, the body, and at infinity. We focus on the case where the size of the
body is small. We prove in a very general setup that the solution of this
problem is unique and we compute a sharp decay rate of the solution far from
the moving body and the wall
Integral potential method for a transmission problem with Lipschitz interface in R^3 for the Stokes and Darcy–Forchheimer–Brinkman PDE systems
The purpose of this paper is to obtain existence and uniqueness results in weighted Sobolev spaces for transmission problems for the non-linear Darcy-Forchheimer-Brinkman system and the linear Stokes system in two complementary Lipschitz domains in R3, one of them is a bounded Lipschitz domain with connected boundary, and the other one is the exterior Lipschitz domain R3 n. We exploit a layer potential method for the Stokes and Brinkman systems combined with a fixed point theorem in order to show the desired existence and uniqueness results, whenever the given data are suitably small in some weighted Sobolev spaces and boundary Sobolev spaces
Penalty finite element approximations of the stationary power- law Stokes problem
Finite element approximations of the stationary power-law Stokes problem using penalty
formulation are considered. A priori error estimates under appropriate smoothness assumptions on the
solutions are established without assuming a discrete version of the BB condition. Numerical solutions
are presented by implementing a nonlinear conjugate gradient metho
Recommended from our members
Z boson production in Pb+Pb collisions at √Snn = 5.02 TeV measured by the ATLAS experiment
The production yield of Z bosons is measured in the electron and muon decay channels in Pb+Pb collisions at √S = 5.02 TeV with the ATLAS detector. Data from the 2015 LHC run corresponding to an integrated luminosity of 0.49 nb are used for the analysis. The Z boson yield, normalised by the total number of minimum-bias events and the mean nuclear thickness function, is measured as a function of dilepton rapidity and event centrality. The measurements in Pb+Pb collisions are compared with similar measurements made in proton-proton collisions at the same centre-of-mass energy. The nuclear modification factor is found to be consistent with unity for all centrality intervals. The results are compared with theoretical predictions obtained at next-to-leading order using nucleon and nuclear parton distribution functions. The normalised Z boson yields in Pb+Pb collisions lie 1-3σ above the predictions. The nuclear modification factor measured as a function of rapidity agrees with unity and is consistent with a next-to-leading-order QCD calculation including the isospin effect. nn -
Measurement of J/ψ production in association with a W ± boson with pp data at 8 TeV
A measurement of the production of a prompt J/ψ meson in association with a W± boson with W± → μν and J/ψ → μ+μ− is presented for J/ψ transverse momenta in the range 8.5–150 GeV and rapidity |yJ/ψ| < 2.1 using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of s = 8 TeV and correspond to an integrated luminosity of 20.3 fb−1. The ratio of the prompt J/ψ plus W± cross-section to the inclusive W± cross-section is presented as a differential measurement as a function of J/ψ transverse momenta and compared with theoretical predictions using different double-parton-scattering cross-sections. [Figure not available: see fulltext.]
Recommended from our members
Combination of searches for Higgs boson pairs in pp collisions at s=13TeV with the ATLAS detector
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb−1 of proton–proton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bb¯bb¯, bb¯W+W−, bb¯τ+τ−, W+W−W+W−, bb¯γγ and W+W−γγ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (κλ) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to −5.0<κλ<12.0 (−5.8<κλ<12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza–Klein Randall–Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model
- …