15 research outputs found

    LARGE AREA HODOSCOPES FOR MUON DIAGNOSTICS OF HELIOSPHERE AND EARTH'S MAGNETOSPHERE

    Get PDF
    Muon diagnostics is a technique for remote monitoring of active processes in the heliosphere and the magnetosphere of the Earth based on the analysis of angular variations of muon flux simultaneously detected from all directions of the upper hemisphere. To carry out muon diagnostics, special detectors – muon hodoscopes – which can detect muons from any direction with good angular resolution in real-time mode are required. We discuss approaches to data analysis and the results of studies of various extra-terrestrial processes detected by means of the wide aperture URAGAN muon hodoscope

    Local anisotropy of muon flux during Forbush decreases from URAGAN data

    Get PDF
    The approach to the analysis of spatial-angular characteristics of the muon flux variations at different phases of Forbush decrease development according to the muon snapshots (muongraphies) obtained using muon hodoscope URAGAN, as well as the analysis results are presented

    EAS array of the NEVOD Experimental Complex

    Get PDF
    A new setup for registration of the electromagnetic component of the EAS at the “knee” region of the energy spectrum of primary cosmic rays (PCR) is now under construction on the basis of the experimental complex NEVOD-DECOR (Moscow, Russia). The EAS array detecting system has a cluster organization. Clusters are located in the MEPhI campus. The specific features of the array registering system that provides particle detection, data acquisition, cluster synchronization and events selection are discussed. The results of counter characteristics study are also presented

    Local anisotropy of muon flux during Forbush decreases from URAGAN data

    Get PDF
    The approach to the analysis of spatial-angular characteristics of the muon flux variations at different phases of Forbush decrease development according to the muon snapshots (muongraphies) obtained using muon hodoscope URAGAN, as well as the analysis results are presented

    Temperature effect corrections for URAGAN based on CAO, GDAS, NOAA data

    Get PDF
    For the analysis of muon flux variations caused by extra-atmospheric processes it is necessary to introduce corrections for meteorological effects. For temperature effect (TE) correction it is necessary to know the temperature profile of the atmosphere. As a rule, this profile is measured by meteorological balloons two or four times a day. Alternative sources are satellite observations and data obtained from models of atmosphere used for weather forecasting. Vertical temperature profiles obtained from NOAA satellites, GDAS (Global Data Assimilation System) and CAO data (Central Aerological Observatory, Russia) for standard isobaric levels were compared. Mean value of temperature difference for most levels does not exceed 1 K. Comparison of URAGAN data corrected for TE with CAO information, satellites and GDAS shows a good agreement. Counting rate and anisotropy of the muon flux corrected for meteorological effects for 2007-2014 are presented

    Test beam results of the fiber-sampling dual-readout calorimeter

    No full text
    The dual-readout calorimetric technique reconstructs the event-by-event electromagnetic fraction of the hadronic shower through the simultaneous measurement of scintillating (S) and Cherenkov (C) light produced by the shower development. The new generation of prototypes, based on Silicon Photomultipliers (SiPMs) readout, adds unprecedented granularity to the well-known high-energy resolution. A highly granular prototype (10×10×100cm3), designed to fully contain electromagnetic showers, was recently built and qualified on beam. It consists of 9 modules, each made of 320 brass capillaries equipped with both scintillating and clear fibers. All the fibers of the central module are coupled with SiPMs, while the PMTs are used for the others. Furthermore, the new FERS-System, designed by Caen to exploit the CITIROC1A ASICs performances, is at the core of the SiPM readout. The recent test beam at DESY allowed us to qualify the readout system and define a procedure to calibrate the SiPM response from ADC to ph-e in a wide dynamic range. We measured the number of ph-e per GeV for scintillating and Cherenkov light together with the calorimetric performances in the energy range of 1–6 GeV. This work reports the system qualification and the test beam results regarding SiPM calibration
    corecore