20 research outputs found

    Evaporating waterbody effects in a simplified urban neighbourhood: A RANS analysis

    Get PDF
    The incorporation of nature-based solutions comprising green and blue infrastructure is often touted as a way to cool cities and enhance pollutant removal. However, there is little agreement between different methodologies to measure the effect of any single intervention. Here, we present 3D steady RANS simulations to investigate the influence of waterbody on in-canyon flow structure, temperature (T*) and water vapour (!*) distribution in a simplified urban neighbourhood. A novel solver that captures evaporation effects is developed and validated against wind tunnel experiments. Simulations are performed under neutral atmospheric conditions for forced -and mixed-convection cases and different air-water temperature differences, indicative of either daytime or night-time conditions. Results under forced convection show minimal impact on the flow structure, whilst T* and !* effects are distributed primarily over and around the water surface. However, the mixed-convection case shows that a cooler waterbody weakens the principal vortex in the open square, whilst T* and !* effects reach further upwind and are more widely distributed in the spanwise direction. A warmer waterbody is shown to disrupt the skimming flow structure, indicating a possible heat and pollutant removal mechanism from around the waterbody and also downwind canyons

    Briefing: UK-RAS white paper in robotics and autonomous systems for resilient infrastructure

    No full text
    This paper presents an extended briefing of the recently published UK-Robotics and autonomous systems (RAS) network Whie Paper in RAS for resilient infrastructure. It aims at setting out a vision of what RAS systems will be able to deliver in infrastructure, what are the current barriers and challenges to achieve that vision and what can the UK Government do to ensure that the UK remains at the forefront in this field
    corecore