34 research outputs found

    Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans

    Get PDF
    Brain activity is continuously modulated, even at “rest”. The alpha rhythm (8–12 Hz) has been known as the hallmark of the brain's idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An ‘induced alpha’ that was correlated with the paradigm (eyes open/ eyes closed), and a ‘spontaneous alpha’ that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the ‘induced map’ included left lateral temporal cortical regions and the hippocampus; the ‘spontaneous map’ included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the ‘resting brain’; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change

    Fairness Motivations and Procedures of Choice between Lotteries as Revealed through Eye Movements

    No full text
    Eye tracking is used to investigate decision makers’ motivations and procedures in choice problems. Patterns of eye movements in problems where the deliberation process is easily discernable are used to understand the deliberation in other problems. We find that in problems which involve the distribution of income between the participant and another individual, participants who behave selfishly nevertheless take into consideration the size of the payment to the other person. In problems that involve choice between two simple lotteries, eye movements indicate that many participants based their decision on a comparison of prizes and probabilities rather than making an expected utility calculation

    Tracking Decision Makers under Uncertainty

    No full text

    Collinear stimuli induce local and cross-areal coherence in the visual cortex of behaving monkeys.

    Get PDF
    BACKGROUND: Collinear patterns of local visual stimuli are used to study contextual effects in the visual system. Previous studies have shown that proximal collinear flankers, unlike orthogonal, can enhance the detection of a low contrast central element. However, the direct neural interactions between cortical populations processing the individual flanker elements and the central element are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using voltage-sensitive dye imaging (VSDI) we imaged neural population responses in V1 and V2 areas in fixating monkeys while they were presented with collinear or orthogonal arrays of Gabor patches. We then studied the spatio-temporal interactions between neuronal populations processing individual Gabor patches in the two conditions. Time-frequency analysis of the stimulus-evoked VSDI signal showed power increase mainly in low frequencies, i.e., the alpha band (α; 7-14 Hz). Power in the α-band was more discriminative at a single trial level than other neuronal population measures. Importantly, the collinear condition showed an increased intra-areal (V1-V1 and V2-V2) and inter-areal (V1-V2) α-coherence with shorter latencies than the orthogonal condition, both before and after the removal of the stimulus contribution. α-coherence appeared between discrete neural populations processing the individual Gabor patches: the central element and the flankers. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that collinear effects are mediated by synchronization in a distributed network of proximal and distant neuronal populations within and across V1 and V2
    corecore