3,473 research outputs found

    Inelastic scattering of protons from 6,8^{6,8}He and 7,11^{7,11}Li in a folding model approach

    Get PDF
    The proton-inelastic scattering from 6,8^{6,8}He and 7,11^{7,11}Li nuclei are studied in a folding model approach. A finite-range, momentum, density and isospin dependent nucleon-nucleon interaction (SBM) is folded with realistic density distributions of the above nuclei. The renormalization factors NR_R and NI_I on the real and volume imaginary part of the folded potentials are obtained by analyzing the respective elastic scattering data and kept unaltered for the inelastic analysis at the same energy. The form factors are generated by taking derivatives of the folded potentials and therefore required renormalizations. The β\beta values are extracted by fitting the p + 6,8^{6,8}He,7,11^{7,11}Li inelastic angular distributions. The present analysis of p + 8^8He inelastic scattering to the 3.57 MeV excited state, including unpublished forward angle data (RIKEN) confirms L = 2 transition. Similar analysis of the p + 6^6He inelastic scattering angular distribution leading to the 1.8 MeV (L = 2) excited state fails to satisfactorily reproduce the data.Comment: one LaTeX file, five PostScript figure

    Identification of gene expression levels in primary melanoma associated with clinically meaningful characteristics

    Get PDF
    Factors influencing melanoma survival include sex, age, clinical stage, lymph node involvement, as well as Breslow thickness, presence of tumor-infiltrating lymphocytes based on histological analysis of primary melanoma, mitotic rate, and ulceration. Identification of genes whose expression in primary tumors is associated with these key tumor/patient characteristics can shed light on molecular mechanisms of melanoma survival. Here, we show results from a gene expression analysis of formalin-fixed paraffin-embedded primary melanomas with extensive clinical annotation. The Cancer Genome Atlas data on primary melanomas were used for validation of nominally significant associations. We identified five genes that were significantly associated with the presence of tumor-infiltrating lymphocytes in the joint analysis after adjustment for multiple testing: IL1R2, PPL, PLA2G3, RASAL1, and SGK2. We also identified two genes significantly associated with melanoma metastasis to the regional lymph nodes (PIK3CG and IL2RA), and two genes significantly associated with sex (KDM5C and KDM6A). We found that LEF1 was significantly associated with Breslow thickness and CCNA2 and UBE2T with mitosis. RAD50 was the gene most significantly associated with survival, with a higher level of expression associated with worse survival

    Point-of-care measurement of blood lactate in children admitted with febrile illness to an African District Hospital.

    Get PDF
    BACKGROUND: Lactic acidosis is a consistent predictor of mortality owing to severe infectious disease, but its detection in low-income settings is limited to the clinical sign of "deep breathing" because of the lack of accessible technology for its measurement. We evaluated the use of a point-of-care (POC) diagnostic device for blood lactate measurement to assess the severity of illness in children admitted to a district hospital in Tanzania. METHODS: Children between the ages of 2 months and 13 years with a history of fever were enrolled in the study during a period of 1 year. A full clinical history and examination were undertaken, and blood was collected for culture, microscopy, complete blood cell count, and POC measurement of blood lactate and glucose. RESULTS: The study included 3248 children, of whom 164 (5.0%) died; 45 (27.4%) of these had raised levels of blood lactate (>5 mmol/L) but no deep breathing. Compared with mortality in children with lactate levels of ≤ 3 mmol/L, the unadjusted odds of dying were 1.6 (95% confidence interval [CI].8-3.0), 3.4 (95% CI, 1.5-7.5), and 8.9 (95% CI, 4.7-16.8) in children with blood lactate levels of 3.1-5.0, 5.1-8.0, or >8.0 mmol/L, respectively. The prevalence of raised lactate levels (>5 mmol/L) was greater in children with malaria than in children with nonmalarial febrile illness (P < .001) although the associated mortality was greater in slide-negative children. CONCLUSIONS: POC lactate measurement can contribute to the assessment of children admitted to hospital with febrile illness and can also create an opportunity for more hospitals in resource-poor settings to participate in clinical trials of interventions to reduce mortality associated with hyperlactatemia

    Prediction of the Gene Expression in Normal Lung Tissue by the Gene Expression in Blood

    Get PDF
    Background: Comparative analysis of gene expression in human tissues is important for understanding the molecular mechanisms underlying tissue-specific control of gene expression. It can also open an avenue for using gene expression in blood (which is the most easily accessible human tissue) to predict gene expression in other (less accessible) tissues, which would facilitate the development of novel gene expression based models for assessing disease risk and progression. Until recently, direct comparative analysis across different tissues was not possible due to the scarcity of paired tissue samples from the same individuals. Methods: In this study we used paired whole blood/lung gene expression data from the Genotype-Tissue Expression (GTEx) project. We built a generalized linear regression model for each gene using gene expression in lung as the outcome and gene expression in blood, age and gender as predictors. Results: For ~18 % of the genes, gene expression in blood was a significant predictor of gene expression in lung. We found that the number of single nucleotide polymorphisms (SNPs) influencing expression of a given gene in either blood or lung, also known as the number of quantitative trait loci (eQTLs), was positively associated with efficacy of blood-based prediction of that gene’s expression in lung. This association was strongest for shared eQTLs: those influencing gene expression in both blood and lung. Conclusions: In conclusion, for a considerable number of human genes, their expression levels in lung can be predicted using observable gene expression in blood. An abundance of shared eQTLs may explain the strong blood/lung correlations in the gene expression

    Machine Learning Technique and Normalization Cross Correlation Model Applied for Face Recognition

    Get PDF
    Face recognition systems just like any other biometric systems have continued to stand the test of time as a reliable means of human verification and identification. The high rate of fraud, crime, and terrorism in Nigeria and the world at large makes it increasingly necessary to have recognition systems that will be compatible with security devices currently deployed. However, the accuracy of facial recognition system is dependent on the adequacy of the model applied. This work applies a combination of Support Vector Machine (SVM) and Normalization Cross Correlation (NCC) starting with a preprocessing stage that involves filtering, cropping, normalization as well as histogram equalization of the face images. The facial images were trained and classified using Support Vector Machine then verified by NCC. The experimental study of the model with benchmarked face images showed that the model is very suitable for obtaining a better accuracy level. The False Acceptance Rate (FAR), False Rejection Rate (FRR), Genuine Acceptance Rate (GAR) and Total Error Rate (TER) values established the superiority of the proposed model over some related ones

    Probing Correlated Ground States with Microscopic Optical Model for Nucleon Scattering off Doubly-Closed-Shell Nuclei

    Full text link
    The RPA long range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e, e') and (e, e'p) measurements. Here the Random Phase Approximation (RPA) theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly-closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e. Hartree-Fock) and correlated (i.e. RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Effects of such correlations which deplete the nuclear matter at small radial distance (r << 2 fm) and enhance its surface region, are getting more and more sizeable as the incident energy increases. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16^{16}O, 40^{40}Ca, 48^{48}Ca and 208^{208}Pb target nuclei. Handling the RPA correlations systematically improves the agreement between scattering predictions and data for energies higher than 150 MeV.Comment: 20 pages, 7 figure

    Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation

    Get PDF
    Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analyzed data from the Steller’s sea lion, Eumetiopias jubatus, where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA(mtDNA) and microsatellite data sets,we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei’s gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA

    A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd

    Get PDF
    Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling
    • …
    corecore