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Summary

Factors influencing melanoma survival include sex, age, clinical stage, lymph node involvement, 

as well as Breslow thickness, presence of tumor infiltrating lymphocytes based on histological 

analysis of primary melanoma (TILs), mitotic rate, and ulceration. Identification of genes whose 

expression in primary tumors are associated with these key tumor/patient characteristics can shed 

light on molecular mechanisms of melanoma survival. Here we show results from a gene 

expression analysis of formalin-fixed, paraffin embedded (FFPE) primary melanomas with 

extensive clinical annotation. The Cancer Genome Atlas (TCGA) data on primary melanomas 

were used for validation of nominally significant associations. We identified 5 genes that were 

significantly associated with the presence of TILs in the joint analysis after adjustment for 

multiple testing: IL1R2, PPL, PLA2G3, RASAL1, and SGK2. We also identified two genes 
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significantly associated with melanoma metastasis to regional lymph nodes (PIK3CG and IL2RA), 

and two genes significantly associated with sex (KDM5C and KDM6A). We found that LEF1 was 

significantly associated with Breslow thickness and CCNA2 and UBE2T with mitosis. RAD50 
was the gene most significantly associated with survival, with a higher level of expression 

associated with worse survival.
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Introduction

Gene expression profiling in tumor samples is a powerful tool for understanding how genetic 

factors influence tumor morphology and progression [1–3]. However, profiling of primary 

melanomas is challenging because primary melanoma tumors are relatively small, and for 

lesions that are heavily or moderately pigmented, melanin can inhibit some downstream 

applications [4]. In addition, nucleic acids obtained from archived formalin-fixed paraffin –

embedded (FFPE) samples are usually fragmented and chemically modified by 

formaldehyde due to fixation and embedding conditions, and DNA or RNA from FFPE 

samples are often of a lower molecular weight than those obtained from fresh or frozen 

samples.[5] Because of these challenges, gene expression studies on primary melanomas are 

limited. Xu, et. al. [6] analyzed gene expression in 31 primary melanomas and identified a 

150 gene signature associated with survival. Another study reported on a number of genes 

differentially expressed between 45 primary melanomas and 18 benign skin nevi [7]. Riker, 

et. al. compared gene expression in 16 primary and 40 metastatic melanomas and identified 

genes associated with metastases [8]. Several other studies focused on developing a 

prognostic signature based on gene expression in primary tumors with a rather limited 

number of samples [7–12]. Even though gene expression data generated by those studies are 

publicly available, the clinicopathologic characteristics of the primary melanomas are not 

described. Jönsson et al [13] conducted unsupervised hierarchical clustering of global gene 

expression data from stage IV metastatic melanomas in 57 patients. The authors identified 

four melanoma subtypes characterized by expression of immune response, pigmentation 

differentiation, proliferation, or stromal composition genes. Those subtypes were later 

recapitulated in primary tumors [14,15]. Jewel et al. [16] used 502-gene cancer panel to 

identify genes associated with ulceration of primary melanomas.

The Cancer Genome Atlas (TCGA) comprises the largest series of melanomas, with 103 

primary Skin Cutaneous Melanoma (SKCM) samples; however, gene expression data are 

available for only 43 of them. Despite incomplete clinical annotation of SKCM, we used 

TCGA SKCM samples for in-silico validation of findings from discovery analyses 

performed on primary melanoma samples we collected.

The goal of this analysis was to identify genes whose expression level in primary 

melanomas correlates with clinically relevant characteristics and validate the associations 

using TCGA data. This research represents a pilot phase of the InterMEL-consortium, which 
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is seeking to identify biomarker signatures that predict recurrence from primary, early stage 

cutaneous melanomas. The clinical characteristics examined included sex, presence of tumor 

infiltrating lymphocytes based on histologic analysis of primary melanoma (TILs), Breslow 

thickness, tumor mitotic rate (TMR), lymph node status, and ulceration, and were selected 

because of their association with clinical outcomes. Numerous studies, beginning over 50 

years ago, have shown that melanoma mortality is higher in men than women [17–20]. The 

presence of TILs within a melanoma can predict both survival and response to treatment in 

melanoma [21]. Breslow’s thickness describes how deeply tumor cells have invaded the skin 

and is an important prognostic factor in melanoma survival [22]. Tumor mitotic rate is 

defined as the number of mitoses/mm2 and is a predictor of melanoma survival, with a 

higher TMR associated with poorer survival [23]. Melanoma involvement in at least one 

lymph node is an important predictor of survival and is also used in melanoma staging [24]. 

Finally, the five-year survival rate is lower in ulcerated stage I and II melanomas as 

compared to non-ulcerated melanomas of the same stage [25].

Methods

Patient population

Tumors from two institutions were used with IRB approval for exempt studies (Exemption 4, 

no identifiers and patients deceased): Case Western Reserve University (n = 16) and the 

University of New Mexico (n = 18) provided the samples that were used in this study. Table 

5 provides the clinical description of samples. The table includes 32 samples after 2 samples 

were removed due to QC issues and low RNA concentration.

Clinical characteristics

We abstracted the following characteristics of tumors/patients from medical records, 

including sex, TILs in primary melanoma, Breslow’s thickness, TMR, lymph node status, 

and ulceration.

RNA extraction

Ten sections, five- or ten microns each, were obtained from archived FFPE tissue blocks, 

placed on uncharged glass slides, and shipped to the Molecular Epidemiology Laboratory at 

Memorial Sloan Kettering Cancer Center. Tissue sections were kept at 4ºC while awaiting 

nucleic acid extraction. Hematoxylin-eosin stained sections were evaluated by a 

dermatopathologist to confirm the presence of melanoma, determine the histologic features 

and tumor purity, and guide the macro and micro-dissection. RNA and DNA were extracted 

with the ALLPrep DNA/RNA FFPE kit (Qiagen) using the Qiagen deparaffinization 

solution, and manufacturer’s recommendations. The RNA quantities and A260/280, 

A260/230 ratios (to examine presence of proteins or organic solvents) were determined with 

a Nanodrop 8000 (Thermo Scientific). The RNA quality was assessed with a TapeStation 

2200 (Agilent).

Selection of genes and assessment of gene expression

Tumor-derived RNA samples were profiled using NanoString nCounter custom codesets. 

This involved the use of a digital color-coded barcode technology that enabled us to measure 
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expression of a number of candidate genes with a high level of precision and sensitivity, and 

without the interference of melanin present in pigmented tumors. For this, a set of 760 genes 

were selected for inclusion in the gene expression analysis, based on published evidence of 

their association with any aspects of melanoma initiation, progression, or response to 

treatment. Forty housekeeping genes were included as internal controls. The complete list of 

the gene used in this analysis can be found in Supplementary Material (Table S1).

Expression data normalization and robustness

For each sample, the geometric mean of each of the positive controls was calculated with the 

nSolver software analysis tool to estimate the overall assay efficiency. Using nSolver 

software, raw data were first normalized using the average of the geometric means of six 

expression sequences not present in any known organism that are spiked into the samples 

and serve as positive controls. Counts were normalized for all target RNAs in all samples 

based on the positive control RNA to account for differences in hybridization efficiency and 

post-hybridization processing, including purification and immobilization of complexes (one 

sample outside the range of 0.3–3 was removed). Housekeeping genes were then removed if 

the mean intensity was less than two standard deviations above the mean of the negative 

controls (six random sequences not present in any organism and not spiked into the samples) 

or if the coefficient of variation of the intensity of each housekeeping gene divided by the 

geometric mean of all housekeeping genes for each sample was greater than 90% (geNorm 

algorithm [40]). Subsequently, the mRNA content normalization was performed using the 

average of the geometric means of the acceptable housekeeping genes as a scaling factor for 

the endogenous targets. There were no samples with scaling factors outside the range of 

0.10–10.

TCGA samples

Clinical and gene expression data were downloaded from the TCGA data portal. Gene 

expression data in the TCGA were available for 43 primary melanoma samples. A total of 

753 out of the original 760 genes assessed in the pilot InterMEL study were also reported in 

TCGA. None of these genes were nominally significantly associated with any clinical 

features studied in the discovery analysis.

Survival analysis

Patients were treated by standard therapy including surgery and chemo- or radiation therapy. 

We used Kaplan-Meier analysis (log-rank test) to compare subjects with high (≥ median) 

versus low (< median) level of expression by overall survival. Each gene was analyzed 

separately.

To test relevance of the results of the analysis of primary melanomas to metastatic 

melanomas, we identified differentially expressed genes between LN-positive versus LN-

negative primary tumors. A total of 14 genes that were significant in both InterMEL and 

TCGA samples have been analyzed: PIK3CG, PLCG2, TLR4, CASP8, ITGA8, IL2RB, 
FLT1, RAC2, NTRK1, IL2RA, IL7R, JAK2, RASGRP1, and HSP90B1. All these genes 

were downregulated in LN-positive samples. The logarithm of the average expression across 

the genes was used as a score to predict survival. The median score was used to stratify cases 
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into high or low average expression. Metastatic (total 460) TCGA samples and metastatic 

(total 214) samples from the GEO GSE65904 dataset [41] were used in the analysis. In 

GSE65904 gene expression was measured by the Illumina HumanHT-12 microarray 

platform (48,107 probes). Probe expressions were converted into gene expressions by 

choosing the probe with the largest average expression across all samples.

Statistical analysis

Our hypothesis was that gene expression in primary melanomas is associated with clinically 

relevant tumor and/or patient characteristics. In univariate analyses, we used nonparametric 

correlation to detect associations of clinically relevant characteristics with TILs, Breslow’s 

thickness, and TMR. Associations of the gene expression level with binary characteristics 

(sex, lymph node status, and ulceration status) were assessed using t-statistics. The 

Benjamini–Hochberg false discovery rate (FDR) method was used to adjust for multiple 

testing [42]. We separated our analysis into discovery using primary data from the pilot 

InterMEL samples, and a validation sample, using an in-silico analysis of SKCM TCGA 

sample expression and clinical data. Associations nominally significant in the discovery 

analysis were used in the validation analysis. Statistical significance in the validation 

analysis was decided based on the number of tests in the validation phase. We then 

performed a combined analysis of both samples by using inverse variance meta-analysis of 

pilot InterMEL and TCGA results.

For multivariate analysis we have used least absolute shrinkage and selection operator 

(LASSO) implemented in STATISTICA (StatSoft). Logistic (for binary outcome) or linear 

(for continuous outcome) regressions were used. Tuning parameter lambda was selected to 

make number of non-zero beta coefficients not exceeding the number of predictors in 

univariate analysis with liberal FDR<0.2.

We used gene set enrichment analysis (GSEA) [43] to identity biological functions enriched 

by the genes up or downregulated in the given phenotype – differentially expressed genes. 

We used curated hallmark GSEA gene sets. Gene sets with FDR <0.05 were considered to 

be significant.

Results

Univariate analysis

Of the 34 tested InterMEL-pilot RNA samples, one failed QC and one had insufficient RNA, 

resulting in 32 evaluable samples used in this study.

Genes differentially expressed by sex

We identified 30 genes differentially expressed between male and female patients. The list of 

the genes with the corresponding P-values for sex difference can be found in supplementary 

materials (Table S2). For two genes, KDM5C and KDM6A, the expression was much higher 

in female compared to male patients. The differences for these two genes remained 

significant after the adjustment for multiple testing: p=0.01 and p=0.02, correspondingly. 
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Those are the only genes that were reproduced by the analysis of TCGA data. Figure 1a 

shows the heat map of the genes nominally associated with sex.

Genes associated with tumor-infiltrating lymphocytes

TILs were coded as ‘0”, “1” and “2” for absent, nonbrisk, and brisk TILs, correspondingly. 

For each gene we calculated the Spearman’s correlation coefficient between the gene 

expression and TILs. We identified 110 genes nominally associated with TILs 

(Supplementary Table S3). None of these associations remained statistically significant after 

adjustment for multiple testing. Twenty-four of the nominally significant genes identified in 

the InterMEL-pilot were also significantly associated with TILs in TCGA: AQP3, CBLC, 
CEBPA, CRABP2, EGFR, ERBB2, FLT3, IL1B, IL1R2, IL7R, ITGB4, JAG2, LAMA3, 
LAMB3, LAMC2, PBX1, PLA2G3, PLA2G4F, PPL, PRDM1, RASAL1, SFN, SGK2, and 
WNT11. For the associations that were common to both datasets, the direction of the effect 

(positive or negative) was the same. In the joint analysis five genes remained significant after 

the adjusting for multiple testing: IL1R2, PPL, PLA2G3, RASAL1, and SGK2. Figure 1b 

shows the heat map of the genes nominally associated with TILs status.

Lymph node status

We identified 131 genes associated with lymph node status coded as LN-positive versus LN-

negative. The list of the genes can be found in Supplementary Table S4. We found that 15 

genes, PIK3CG, PLCG2, TLR4, CASP8, ITGA8, IL2RB, FLT1, RAC2, NTRK1, IL2RA, 
IL7R, ALKBH3, JAK2, RASGRP1, and HSP90B1, were also nominally significant in 

TCGA. PIK3CG expression remained statistically significant in the validation set after the 

adjustment for multiple testing and IL2RAremained statistically significant in the joint 

analysis of pilot and validation test after the adjustment for multiple testing. Figure 1c shows 

the heat map of the genes nominally associated with LN status.

Ulceration

Thirty-one genes were detected as nominally statistically significant for an association of 

their expression with ulceration status, coded as present versus absent (Table S5). Only one 

gene, IL23A, was also nominally significant in TCGA (t=2.4, P=0.02). The association was 

not significant after the adjustment for multiple testing. Figure 1d shows the heat map of the 

genes nominally associated with ulceration status.

Breslow thickness

We identified 69 nominally significant genes (Supplementary Table S6), none of which 

remained significant after the adjustment for multiple testing. Five of them, HSP90B1, 
ACVR1C, LEF1, FGF17, and VEGFA, were also significant in TCGA. The sign of the 

association was the same in all genes except one, FGF17, which was negative in the 

discovery (Correlation Coefficient (CC)=−0.39, P=0.03) and positive in the validation 

(TCGA) set (CC=0.34, P=0.03). LEF1 remained significant in the validation set after 

adjustment for multiple testing. No finding remained significant in the joint analysis.
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Tumor mitotic rate

We identified 76 genes nominally associated with TMR. The genes are shown in 

Supplementary Table S7. Six genes nominally significant in the pilot InterMEL study, 

MSH6, RAD51, CCNA2, SUV39H2, CDC6, and MSH2, were also nominally significant in 

TCGA. For all genes the sign of association was the same in the both datasets. CCNA2 and 

UBE2T remained significant in the joint analysis after the adjustment for multiple testing.

Clinical stage

We coded clinical stages starting from IIA, IIB, IIC, IIIA, IIIB, IIIC, and IV as consecutive 

integers and looked at the correlation with expression of each gene. We have identified 13 

genes nominally associated with stage (Table S8). None of them remained significant after 

adjustment for multiple testing or was detected even as nominally significant in TCGA 

sample.

Survival analysis

A total of 31 nominally significant genes were identified (Supplementary Table S9). None of 

the genes were significant after adjustment for multiple testing. We did not use TCGA 

SKCM dataset for validation because survival data were available for only two out of 53 

primary melanoma samples. Supplementary Figure S1 shows survival curves for RAD50 
gene, with low expression having a better survival, and for TNFRSF10A gene, with low 

expression having worse survival.

We found that the average expression of 14 genes in metastatic melanomas predicts survival 

(Fig. 2). Those 14 genes were identified based on the analysis of primary melanomas 

(comparison of LN-positive vs LN-negative cases).

Overall correlation of differentially expressed genes between pilot InterMEL and TCGA 
samples

The sample size in this analysis is relatively small, which leads to insufficient statistical 

power to detect small associations. On the other hand, the large number of genes (and 

statistical tests) may lead to false positives. To deal with these issues we used TCGA 

samples for independent validation. True positives are expected to have similar patterns of 

differential expression in both samples; that is, true positives are expected to be consistent 

between the discovery (pilot InterMEL) and the validation (TCGA SKCM) samples, while 

false positives will be uncorrelated. As a measure of differential expression of the gene, we 

used t-statistics for categorical variables and correlation coefficient for quantitative traits. We 

looked at parallelism of differential expression in discovery and validation samples. For 

example, we used t-statistics for gender differences for each of 753 genes. We estimated 

correlation of t-statistics between the pilot InterMEL and the TCGA samples to estimate the 

overall consistency between the discovery and the validation samples (Table 1). The 

strongest overall consistency between pilot InterMEL and TCGA samples was detected for 

TILs, followed by Breslow’s thickness, lymph node status, ulceration status, and clinical 

stage. No significant associations were detected for TMR or sex. The TCGA sample size 

was very small for TMR, only being reported for five patients, which may explain why there 

was no association identified.
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Least absolute shrinkage and selection operator (LASSO) analysis

Table 2 shows genes with β≠0 in LASSO analysis. The number of significant genes varies 

from two for clinical stage to 20 for TILs.

Gene set enrichment analysis

The results of the gene set enrichment analysis (GSEA) are shown in Table 3. 

Supplementary figure S2 shows an example of a distribution of the genes that are up- (upper 

panel) or down-regulated (lower panel) in a given pathway. The G2M_CHECKPOINT was 

the most frequently associated pathway; it was significantly associated with LN status, 

ulceration status, Breslow thickness, tumor mitotic rate and clinical stage. Tumor mitotic 

rate is the phenotype with the largest number (six) of associated functional categories. Table 

4 shows genes contributing to the enrichment of gene sets listed in Table 3.

Discussion

Our goal was to demonstrate an approach for investigating associations between gene 

expression in primary melanomas and patient characteristics that are relevant for melanoma 

progression and survival and may be used to develop a reliable molecular prognostic 

signature based on gene expression.

We identified two genes in the InterMEL and TCGA samples that were statistically 

significantly associated with sex after the adjustment for multiple testing: KDM5C and 

KDM6A. Both genes are located on the X chromosome in relative proximity to each other 

(Xp11.3 and Xp11.22, respectively). The gene expression levels for these two genes are 

about twice as high in female as compared to male patients, suggesting that incomplete 

inactivation of the X chromosome might contribute to the observed differences in expression 

levels. KDM5C (Lysine Demethylase 5C) is involved in the regulation of transcription and 

chromatin remodeling, and KDM6A (Lysine Demethylase 6A) catalyzes the demethylation 

of tri/dimethylated histone H3. Although the relevance of these genes in relation to sex 

differences and melanoma survival is not clear, KDM5C mutations have been reported in 

association with recurrence and survival in renal cell carcinoma [26]. KDM6A plays a role 

in transcriptional regulation in cancer including bladder and pancreatic cancer [27,28].

We have identified five genes significantly associated with quantity of lymphocytes in 

primary tumors assessed as TILs. Only two of them, IL1R2 and PPL, have evidence 

supporting an association with immune response. The expression level of LEF1 was 

positively associated with Breslow thickness. LEF1 plays an important role in regulation of 

growth and differentiation of melanocytes and melanoma [29]. It may influence melanoma 

development through Wnt/β-catenin signaling pathway in melanoma epithelial-to-

mesenchymal-like transition [30]. Two genes found to be significantly associated with 

lymph node status, PIK3CG and IL2RA, have been shown to play important roles in 

melanoma development through regulation of tumor cell adhesion and invasion and immune 

response [31].

The association of CCNA2 with tumor mitotic rate also remained significant after the 

adjustment for multiple testing; the expression of this gene positively correlates with mitotic 
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rate. CCNA2 controls both the G1/S and the G2/M transition in the cell cycle. It was 

identified as a prognostic marker for melanoma survival [32]. CCNA2 has been shown to 

induce autophagy in melanoma cells [33]. Ubiquitin Conjugating Enzyme E2 T (UBE2T) 

gene was also significantly associated with TMR in InterMEL sample after adjustment for 

multiple testing. The expression level of the gene in tumor was shown positively correlates 

with cell proliferation and tumor progression in different types of cancer [34,35].

Surprisingly, we did not detect genes whose expression level in primary melanomas was 

significantly associated with clinical stage. One of the possible explanations may be that 

selected genes do not show gradual changes in expression but rather may have stage specific 

differences that we cannot detect because of the limited sample size (the number of patients 

for any specific stage is between 1 and 6 in our samples). In addition, stage at diagnosis does 

not necessarily relate to tumor aggressiveness which we would not necessarily hypothesize 

is related to tumor gene expression.

The results of the LASSO regression are consistent with the results of univariate analysis in 

that if the number of associated genes was high for a given phenotype, the number of 

significant genes was also high in the LASSO analysis. However, because of a relatively 

small sample size, we consider the results of the multivariate regression analyses as 

preliminary.

The most significant gene detected in survival analysis was RAD50. We found that low 

expression of RAD50 in primary melanoma is associated with a better survival. This finding 

is consistent with reported studies where low expression level (or mutational alterations) of 

RAD50 was associated with a better survival in breast [36], colorectal [37], and gastric [38] 

cancers [36–38]. Together with our findings, the results suggest that the association between 

somatic alterations of RAD50 may be of a pan-cancer nature and likely reflect modifications 

of basic biological functions, e.g. genomic instability [39].

In GSEA we have identified a number of biological functions that remained significant after 

correction for multiple testing. In the majority of cases identified functions were logically 

associated with phenotypes. Examples include “interferon gamma response” associated with 

TILs, “G2M checkpoint” associated with tumor mitotic rate and “TNFA signaling via 

NFKB” associated with ulceration status. Surprising findings include “epithelial 

mesenchymal transition “ associated with sex and “estrogen response” associated with TILs. 

These findings need to be validated on a larger dataset to be generated by InterMEL project.

Our study had a number of strengths, including analysis of gene expression with respect to 

many clinically relevant factors in a modestly sized cohort of samples and, importantly, 

many of our findings were further substantiated using publically available TCGA data. 

Further, our proof of principle study shows the feasibility of extracting high quality RNA 

from FFPE samples of SKCM, many of which were over a decade old with 90% of the 

samples being of sufficient quality for large scale expression analyses. However, our study is 

not without limitations. We used targeted analysis of preselected genes and this approach 

may have omitted some important signals from genes that were not included in the analysis. 

The reason we used a candidate- instead of a whole genome approach is because of the 
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inherent limitations of archived primary melanomas. Namely, the amount and the quality of 

the extracted RNA, and the presence of melanin in some cases, precludes us from using 

other platforms. On the other hand, the amount and quality of the tissue-derived RNA 

presented no limitations with the Nanostring platform. In addition, we only used samples 

from patients with stage II and higher melanoma, and thus our findings may not be relevant 

to stage I melanoma patients.

Conclusion

In conclusion, we show that the expression of several genes in InterMEL and SKCM is 

associated with clinically relevant tumor features as well as patient characteristics. Findings 

from this study might suggest targets for future drug development to treat melanoma. Future 

studies will be needed to validate these, as well as assess their association with other 

variables, such as patient survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Heat maps of genes nominally significant in analyses of binary traits. (a) sex; (b) TILs; (c) 

LN status; (d) ulceration status.
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FIGURE 2. 
Survival curves for high vs low expression of the 14 genes differentially expressed in 

primary melanomas. A median of the score based on the average, normalized, log-

transformed expression of 14 genes was used to stratify cases in high and low expressed.
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Table 1.

Overall agreement between InterMEL-pilot and TCGA data in differentially expressed genes.

Variable Statistics Used CC N p-value

TILs T statistics 0.35 749 3.2×10−10

Breslow’s thickness CCs 0.22 748 1.3×10−7

Lymph node status T statistics 0.16 748 1.1×10−5

Ulceration T statistics 0.12 748 1.5×10−3

Clinical stage CCs 0.08 749 2.2×10−2

Mitotic rate T statistics 0.06 737 1.3×10−1

Sex T statistics 0.03 749 5.7×10−1

CC - correlation coefficient; N - sample size (number of genes)
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Table 2.

Genes that remained significant in LASSO models.

Outcome Significant genes

Sex KDM5C, KDM6A, BDNF

TILs BID, CDC25C, ETV4, FANCB, FLNA, GNG7, HPGD, ID2, LEF1, MAP2K1, MCM2, MLF1, NRAS, PIK3R1, 
PIK3R3, PPP2R1A, SFRP4, STMN1, SYK, TGFBR2

Breslow thickness CACNB2, EGF, EPO, H3F3A, ITGB4, LIF, MAD2L2, MAP3K12, MCM6, MMP9, PTEN, SHC1, TLX1, TNFRSF10C, 
WNT7A

Tumor mitotic rate AKT1, CACNB2, CASP7, CCNA2, COL2A1, H3F3A, HELLS, ITGA7, MCM6, MMP9, PTEN, SHC1, UBE2T

Lymph node status ALKBH2, ARID1B, BCOR, CALML6, CCND2, EPO, FZD9, GZMB, IL2RA, MET, NFKB1, NPM2, PBRM1, POLE2, 
PTPN11, TNC, VDR

Ulceration AKT1, DSC1, HPGD, IL23A, NR4A3, SETD2, SHC4, SOCS3, WHSC1

Clinical stage ABL1, LTA4H
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Table 4.

Genes contributing to the enrichment of functional categories listed in Table 4

Gene set Differentially expressed genes

E2F_TARGETS MYC, MSH2, RAD50, CDK4, BRCA2, RAD21, MCM4, WEE1, PRKDC, HELLS, 
RFC3, CDC25A, MCM3, MCM7, CDKN2A, SRSF2, STMN1, CHEK2, BRCA1, 
MCM2, KPNA2

EPITHELIAL_MESENCHYMAL_TRANSITION INHBA, IL15, TNC, FLNA, ITGA2, COMP, JUN, THBS1, PDGFRB, DKK1, VEGFA, 
FZD8, COL1A1, VEGFC, IGFBP3, COL1A2, ITGB3, COL3A1, ID2, GJA1, SFRP4, 
COL5A1, FN1, FAS, COL5A2, GAS1, COL11A1, BDNF

ESTROGEN_RESPONSE_LATE BCL2, SFN, FOS, IDH2, JAK1, CACNA2D2, FGFR3, KLF4, CXCL14, TIAM1, 
LAMC2, JAK2, ID2

G2M_CHECKPOINT MYC, MSH2, RAD50, CDK4, BRCA2, RAD21, MCM4, WEE1, PRKDC, HELLS, 
RFC3, CDC25A, MCM3, MCM7, CDKN2A, SRSF2, STMN1, CHEK2, BRCA1, 
MCM2, KPNA2

IL6_JAK_STAT3_SIGNALING STAT1, STAT3, GRB2, CD14, CRLF2, PIM1, CSF2, PIK3R5, JUN, TNF, CSF3R, 
PLA2G2A, IL3RA, IL1R2, IL1R1, TLR2, MAP3K8, IL2RA, IL7, SOCS1, ACVR1B

INFLAMMATORY_RESPONSE CCR7, PIK3R5, IL7R, IL1B, IL2RB, IL1A, IRAK2, IL8, RASGRP1, OSM, RELA, 
NFKBIA, CSF3R

INTERFERON_GAMMA_RESPONSE PIM1, NFKB1, PLA2G4A, ITGB7, IL2RB, NFKBIA, CD40, JAK2, TNFSF10, IL15, 
STAT4, IL7, CASP8, SOCS1

KRAS_SIGNALING_DN WNT16, EGF, FGF22, TLX1, CALML5, TGFB2, CNTFR, FGFR3

MYC_TARGETS_V1 MYC, CDK2, CDK4, MCM4, U2AF1, MCM7, SRSF2, MCM2, KPNA2, MCM5, 
HDAC2, PCNA, RFC4

TNFA_SIGNALING_VIA_NFKB NR4A3, SOCS3, TNC, BTG1, EFNA1, FOSL1, LIF, IL6, VEGFA, DUSP5, BIRC3, 
IL1A, LAMB3, INHBA, NFKBIA, IL1B, CLCF1, RELA, NR4A1
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Table 5.

Clinical characteristics of primary melanoma samples used in the analysis.

Patient ID Sex LN Clinical
stage

Breslow
thickness

(mm)
Ulceration

Mitosis
(#/mm2)

TILs

IML-0001 male yes IIB 3.6 Yes 4 no

IML-0002 male no IIB 3 Yes 3 no

IML-0003 female yes IIC 10.5 Yes 8 no

IML-0004 male no IIC 11 Yes 12 no

IML-0005 male yes IIIC 18 Yes 16 no

IML-0006 female yes IIB 3.8 Yes 5 yes

IML-0007 male yes IIIC 6.9 No 4 no

IML-0008 male no IIC 14 Yes 24 no

IML-0009 male no IIA 2.5 No 1 no

IML-0010 male yes IIIC 1.2 Yes 1 yes

IML-0011 female yes IIIA 1.8 Yes 2 yes

IML-0012 female yes IIIA 1.5 No 1 no

IML-0013 male no IIIB 2.8 Yes 3 yes

IML-0014 female yes IIA 3.7 No 2 yes

IML-0015 male no IIB 6 no 6 no

IML-0016 female no IIB 2.4 Yes 3 yes

IML-0017 male yes IIIA 1.5 Yes 1 yes

IML-0019 female yes IIIB 12 Yes 23 no

IML-0020 male yes IIIC 6 Yes 7 yes

IML-0021 female no IV 5 No 2 no

IML-0022 male no IIC 3 Yes 21 yes

IML-0024 male yes IIIB 6 No 4 yes

IML-0025 male no IIIB 3 No 7 yes

IML-0026 female no IIB 3 YEs 6 no

IML-0027 female no IIC 6 Yes 9 no

IML-0028 male no IV 5 Yes 7 yes

IML-0029 female yes IIIA 1.4 No 1 yes

IML-0030 female yes IV 15 Yes 27 yes

IML-0032 male yes IIIB 1.2 No 0 yes

IML-0033 female no IIIC 4 No 1 no

IML-0034 female no IV 1.4 No 1 yes

IML-0035 female yes IIIC 12 No 12 yes
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