212 research outputs found
The First Cold Antihydrogen
Antihydrogen, the atomic bound state of an antiproton and a positron, was
produced at low energy for the first time by the ATHENA experiment, marking an
important first step for precision studies of atomic antimatter. This paper
describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and
Related Topics, to be published in NIM
The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?
We study the phase diagram of the Ising-Kondo lattice with transverse
magnetic field as a possible model for the weak-moment heavy-fermion compound
URu2Si2, in terms of two low-lying f singlets in which the uranium moment is
coupled by on-site exchange to the conduction electron spins. In the mean-field
approximation for an extended range of parameters, we show that the conduction
electron magnetization responds logarithmically to f-moment formation, that the
ordered moment in the antiferromagnetic state is anomalously small, and that
the Neel temperature is of the order observed. The model gives a qualitatively
correct temperature-dependence, but not magnitude, of the specific heat. The
majority of the specific heat jump at the Neel temperature arises from the
formation of a spin gap in the conduction electron spectrum. We also discuss
the single-impurity version of the model and speculate on ways to increase the
specific heat coefficient. In the limits of small bandwidth and of small
Ising-Kondo coupling, we find that the model corresponds to anisotropic
Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS),
Received by Phys. Rev. B 19 April 199
First Production and Detection of Cold Antihydrogen Atoms
The ATHENA experiment recently produced the first atoms of cold antihydrogen.
This paper gives a brief review of how this was achieved.Comment: Invited talk at Int. Conf. on Low Energy Antiprotons 2003 (LEAP03),
to be published in NIM
One- and two-photon resonant spectroscopy of hydrogen and anti-hydrogen atoms in external electric fields
The resonant spectra of hydrogen and anti-hydrogen atoms in the presence of
an external electric field are compared theoretically. It is shown that
nonresonant corrections to the transition frequency contain terms linear in the
electric field. The existence of these terms does not violate space and time
parity and leads to a difference in the resonant spectroscopic measurements for
hydrogen and anti-hydrogen atoms in an external electric field. The one-photon
1s-2p and the two-photon 1s-2s resonances are investigated
Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector
In 2002, the ATHENA collaboration reported the creation and detection of cold
(~15 K) antihydrogen atoms [1]. The observation was based on the complete
reconstruction of antihydrogen annihilations, simultaneous and spatially
correlated annihilations of an antiproton and a positron. Annihilation
byproducts are measured with a cylindrically symmetric detector system
consisting of two layers of double sided Si-micro-strip modules that are
surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper
gives a brief overview of the experiment, the detector system, and event
reconstruction.
Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on
Astroparticle, Particle, Space Physics, Detectors and Medical Physics
Applications (Como, Italy October 2003) to be published by World Scientific
(style file included
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
Three Dimensional Annihilation Imaging of Antiprotons in a Penning Trap
We demonstrate three-dimensional annihilation imaging of antiprotons trapped
in a Penning trap. Exploiting unusual feature of antiparticles, we investigate
a previously unexplored regime in particle transport; the proximity of the trap
wall. Particle loss on the wall, the final step of radial transport, is
observed to be highly non-uniform, both radially and azimuthally. These
observations have considerable implications for the production and detection of
antihydrogen atoms.Comment: Invited Talk at NNP03, Workshop on Non-Neutral Plasmas, 200
Cold-Antimatter Physics
The CPT theorem and the Weak Equivalence Principle are foundational
principles on which the standard description of the fundamental interactions is
based. The validity of such basic principles should be tested using the largest
possible sample of physical systems. Cold neutral antimatter (low-energy
antihydrogen atoms) could be a tool for testing the CPT symmetry with high
precision and for a direct measurement of the gravitational acceleration of
antimatter. After several years of experimental efforts, the production of
low-energy antihydrogen through the recombination of antiprotons and positrons
is a well-established experimental reality. An overview of the ATHENA
experiment at CERN will be given and the main experimental results on
antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics,
Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl
Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion
We discuss the possibility that dense antihydrogen could provide a path
towards a mechanism for a deep space propulsion system. We concentrate at
first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a
Bose-Einstein Condensate, matter (or antimatter) is in a coherent state
analogous to photons in a laser beam, and individual atoms lose their
independent identity. This allows many atoms to be stored in a small volume. In
the context of recent advances in producing and controlling BECs, as well as in
making antihydrogen, this could potentially provide a revolutionary path
towards the efficient storage of large quantities of antimatter, perhaps
eventually as a cluster or solid.Comment: 12 pages, 3 figure
- …
