212 research outputs found

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM

    The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?

    Full text link
    We study the phase diagram of the Ising-Kondo lattice with transverse magnetic field as a possible model for the weak-moment heavy-fermion compound URu2Si2, in terms of two low-lying f singlets in which the uranium moment is coupled by on-site exchange to the conduction electron spins. In the mean-field approximation for an extended range of parameters, we show that the conduction electron magnetization responds logarithmically to f-moment formation, that the ordered moment in the antiferromagnetic state is anomalously small, and that the Neel temperature is of the order observed. The model gives a qualitatively correct temperature-dependence, but not magnitude, of the specific heat. The majority of the specific heat jump at the Neel temperature arises from the formation of a spin gap in the conduction electron spectrum. We also discuss the single-impurity version of the model and speculate on ways to increase the specific heat coefficient. In the limits of small bandwidth and of small Ising-Kondo coupling, we find that the model corresponds to anisotropic Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS), Received by Phys. Rev. B 19 April 199

    One- and two-photon resonant spectroscopy of hydrogen and anti-hydrogen atoms in external electric fields

    Full text link
    The resonant spectra of hydrogen and anti-hydrogen atoms in the presence of an external electric field are compared theoretically. It is shown that nonresonant corrections to the transition frequency contain terms linear in the electric field. The existence of these terms does not violate space and time parity and leads to a difference in the resonant spectroscopic measurements for hydrogen and anti-hydrogen atoms in an external electric field. The one-photon 1s-2p and the two-photon 1s-2s resonances are investigated

    Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector

    Full text link
    In 2002, the ATHENA collaboration reported the creation and detection of cold (~15 K) antihydrogen atoms [1]. The observation was based on the complete reconstruction of antihydrogen annihilations, simultaneous and spatially correlated annihilations of an antiproton and a positron. Annihilation byproducts are measured with a cylindrically symmetric detector system consisting of two layers of double sided Si-micro-strip modules that are surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper gives a brief overview of the experiment, the detector system, and event reconstruction. Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como, Italy October 2003) to be published by World Scientific (style file included

    Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    Get PDF
    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401 (2006), in slightly different for

    Three Dimensional Annihilation Imaging of Antiprotons in a Penning Trap

    Full text link
    We demonstrate three-dimensional annihilation imaging of antiprotons trapped in a Penning trap. Exploiting unusual feature of antiparticles, we investigate a previously unexplored regime in particle transport; the proximity of the trap wall. Particle loss on the wall, the final step of radial transport, is observed to be highly non-uniform, both radially and azimuthally. These observations have considerable implications for the production and detection of antihydrogen atoms.Comment: Invited Talk at NNP03, Workshop on Non-Neutral Plasmas, 200

    Cold-Antimatter Physics

    Full text link
    The CPT theorem and the Weak Equivalence Principle are foundational principles on which the standard description of the fundamental interactions is based. The validity of such basic principles should be tested using the largest possible sample of physical systems. Cold neutral antimatter (low-energy antihydrogen atoms) could be a tool for testing the CPT symmetry with high precision and for a direct measurement of the gravitational acceleration of antimatter. After several years of experimental efforts, the production of low-energy antihydrogen through the recombination of antiprotons and positrons is a well-established experimental reality. An overview of the ATHENA experiment at CERN will be given and the main experimental results on antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics, Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl

    Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion

    Full text link
    We discuss the possibility that dense antihydrogen could provide a path towards a mechanism for a deep space propulsion system. We concentrate at first, as an example, on Bose-Einstein Condensate (BEC) antihydrogen. In a Bose-Einstein Condensate, matter (or antimatter) is in a coherent state analogous to photons in a laser beam, and individual atoms lose their independent identity. This allows many atoms to be stored in a small volume. In the context of recent advances in producing and controlling BECs, as well as in making antihydrogen, this could potentially provide a revolutionary path towards the efficient storage of large quantities of antimatter, perhaps eventually as a cluster or solid.Comment: 12 pages, 3 figure
    corecore