472 research outputs found

    Variational collocation for systems of coupled anharmonic oscillators

    Full text link
    We have applied a collocation approach to obtain the numerical solution to the stationary Schr\"odinger equation for systems of coupled oscillators. The dependence of the discretized Hamiltonian on scale and angle parameters is exploited to obtain optimal convergence to the exact results. A careful comparison with results taken from the literature is performed, showing the advantages of the present approach.Comment: 14 pages, 10 table

    Solution to the Equations of the Moment Expansions

    Get PDF
    We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach

    Predicting extreme events in a data-driven model of turbulent shear flow using an atlas of charts

    Full text link
    Dynamical systems with extreme events are difficult to capture with data-driven modeling, due to the relative scarcity of data within extreme events compared to the typical dynamics of the system, and the strong dependence of the long-time occurrence of extreme events on short-time conditions.A recently developed technique [Floryan, D. & Graham, M. D. Data-driven discovery of intrinsic dynamics. Nat Mach Intell 4\textbf{4}, 1113-1120 (2022)], here denoted as Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds\textit{Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds}, or CANDyMan, overcomes these difficulties by decomposing the time series into separate charts based on data similarity, learning dynamical models on each chart via individual time-mapping neural networks, then stitching the charts together to create a single atlas to yield a global dynamical model. We apply CANDyMan to a nine-dimensional model of turbulent shear flow between infinite parallel free-slip walls under a sinusoidal body force [Moehlis, J., Faisst, H. & Eckhardt, B. A low-dimensional model for turbulent shear flows. New J Phys 6\textbf{6}, 56 (2004)], which undergoes extreme events in the form of intermittent quasi-laminarization and long-time full laminarization. We demonstrate that the CANDyMan method allows the trained dynamical models to more accurately forecast the evolution of the model coefficients, reducing the error in the predictions as the model evolves forward in time. The technique exhibits more accurate predictions of extreme events, capturing the frequency of quasi-laminarization events and predicting the time until full laminarization more accurately than a single neural network.Comment: 9 pages, 7 figure

    Colour superconductivity in finite systems

    Full text link
    In this paper we study the effect of finite size on the two-flavour colour superconducting state. As well as restricting the quarks to a box, we project onto states of good baryon number and onto colour singlets, these being necessary restrictions on any observable ``quark nuggets''. We find that whereas finite size alone has a significant effect for very small boxes, with the superconducting state often being destroyed, the effect of projection is to restore it again. The infinite-volume limit is a good approximation even for quite small systems.Comment: 14 pages RevTeX4, 12 eps figure

    Chiral quark-soliton model in the Wigner-Seitz approximation

    Get PDF
    In this paper we study the modification of the properties of the nucleon in the nucleus within the quark-soliton model. This is a covariant, dynamical model, which provides a non-linear representation of the spontaneously broken SU(2)_L X SU(2)_R symmetry of QCD. The effects of the nuclear medium are accounted for by using the Wigner-Seitz approximation and therefore reducing the complex many-body problem to a simpler single-particle problem. We find a minimum in the binding energy at finite density, a change in the isoscalar nucleon radius and a reduction of the in-medium pion decay constant. The latter is consistent with a partial restoration of chiral symmetry at finite density, which is predicted by other models.Comment: 30 pages, 13 figures; uses REVTeX and epsfi

    Relativistic Hamiltonians in many-body theories

    Get PDF
    We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript version of the paper is available by anonymous ftp at ftp://carmen.to.infn.it/pub/depace/papers/951

    Deep venous thrombosis and abortion: an unusual clinical manifestation of severe form of pectus excavatum

    Get PDF
    Pectus excavatum is a chest wall malformation with a strong psychological and aesthetic impact. Rarely, pectus excavatum patients can show respiratory or cardiac symptoms occurring mainly during physical exertion. We report a case of a 34-year-old pregnant woman with a severe degree of pectus excavatum who developed serious cardiovascular disease resulting in spontaneous twin abortion at the twenty-first week of gestation. Cardiovascular disease was resolved after open surgical correction of pectus excavatum. This case shows how a tardive diagnosis and a delayed surgical approach for pectus excavatum can lead to severe consequences

    Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model

    Get PDF
    Chiral phase properties of finite size hadronic systems are investigated within the Nambu--Jona-Lasinio model. Finite size effects are taken into account by making use of the multiple reflection expansion. We find that, for droplets with relatively small baryon numbers, chiral symmetry restoration is enhanced by the finite size effects. However the radius of the stable droplet does not change much, as compared to that without the multiple reflection expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.

    Insights from Amphioxus into the Evolution of Vertebrate Cartilage

    Get PDF
    Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
    • …
    corecore