95 research outputs found
Liquid metals: early contributions and some recent developments
We illustrate in this contribution the progress in the theoretical study of
liquid metals made in the last decades, starting from the example of liquid
gallium and the early work in Jean-Pierre Badiali's group. This was based on
the combination of the perturbation theory with pseudo-potentials for the
electrons and the liquid state theory for the ions. More recent developments
combining ab initio and classical molecular dynamics simulations are finally
illustrated on the example of glass forming alloys.Comment: 12 pages, 8 figure
Equilibrium route to colloidal gellation: mixtures of hard sphere-like colloids
The binodals and the non-ergodicity lines of a binary mixture of hard
sphere-like particles with large size ratio are computed for studying the
interplay between dynamic arrest and phase separation in depletion-driven
colloidal mixtures. Contrarily to the case of hard core plus short range
effective attraction, physical gellation without competition with the
fluid-phase separation can occur in such mixtures. This behavior due to the
oscillations in the depletion potential should concern all simple mixtures with
non-ideal depletant, justifying further studies of their dynamic properties
Controlling the composition of a confined fluid by an electric field
Starting from a generic model of a pore/bulk mixture equilibrium, we propose
a novel method for modulating the composition of the confined fluid without
having to modify the bulk state. To achieve this, two basic mechanisms -
sensitivity of the pore filling to the bulk thermodynamic state and electric
field effect - are combined. We show by Monte Carlo simulation that the
composition can be controlled both in a continuous and in a jumpwise way. Near
the bulk demixing instability, we demonstrate a field induced population
inversion in the pore. The conditions for the realization of this method should
be best met with colloids, but being based on robust and generic mechanisms, it
should also be applicable to some molecular fluids.Comment: 9 pages, 5 figure
Calculated electrocapillary curve for a molten salt
If bulk properties of simple molten salts may be reasonably well understood in terms of the primitive model, the situation with respect to surface properties is less satisfactory. It has been shown that a simple model for the distributions at the free surface of a molten salt can give surface tension and surface energy in reasonable accord with experiment, provided that a factor guaranteeing local electroneutrality is introduced. In this model, properties are given in terms of bulk-salt distribution functions, for which the primitive model is used. The present work extends this model to the electrocapillary curve, i.e., variation of surface tension with surface charge density. The calculations are like those for the free surface, corresponding to the point of zero charge. The local electroneutrality correction, while extremely important for the magnitude of the surface tension, is much less important for its variation with surface charge, and hence the electrical capacitance. Our capacitances, derived from surface charges and potential drops derived from our model, are much too small, whereas the Gouy-Chapman model gives values which are much too large. The calculated variations of surface tension and potential drop with surface charge do not satisfy the thermodynamically derived Lippmann equations; neither does one obtain the same surface tension from different thermodynamically equivalent formulas. In order to understand the reasons and to improve the situation, we show how thermodynamic consistency may be restored to our model. Capacitances are still numerically much smaller than those reported experimentally
Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion
Computer simulations and theory are used to systematically investigate how
the effective force between two big colloidal spheres in a sea of small spheres
depends on the basic (big-small and small-small) interactions. The latter are
modeled as hard-core pair potentials with a Yukawa tail which can be both
repulsive or attractive. For a repulsive small-small interaction, the effective
force follows the trends as predicted by a mapping onto an effective
non-additive hard-core mixture: both a depletion attraction and an accumulation
repulsion caused by small spheres adsorbing onto the big ones can be obtained
depending on the sign of the big-small interaction. For repulsive big-small
interactions, the effect of adding a small-small attraction also follows the
trends predicted by the mapping. But a more subtle ``repulsion through
attraction'' effect arises when both big-small and small-small attractions
occur: upon increasing the strength of the small-small interaction, the
effective potential becomes more repulsive. We have further tested several
theoretical methods against our computer simulations: The superposition
approximation works best for an added big-small repulsion, and breaks down for
a strong big-small attraction, while density functional theory is very accurate
for any big-small interaction when the small particles are pure hard-spheres.
The theoretical methods perform most poorly for small-small attractions.Comment: submitted to PRE; New version includes an important quantitative
correction to several of the simulations. The main conclusions remain
unchanged thoug
Angle-resolved photoemission study and first principles calculation of the electronic structure of GaTe
The electronic band structure of GaTe has been calculated by numerical atomic
orbitals density-functional theory, in the local density approximation. In
addition, the valence-band dispersion along various directions of the GaTe
Brillouin zone has been determined experimentally by angle-resolved
photoelectron spectroscopy. Along these directions, the calculated valence-band
structure is in good concordance with the valence-band dispersion obtained by
these measurements. It has been established that GaTe is a direct-gap
semiconductor with the band gap located at the Z point, that is, at Brillouin
zone border in the direction perpendicular to the layers. The valence-band
maximum shows a marked \textit{p}-like behavior, with a pronounced anion
contribution. The conduction band minimum arises from states with a comparable
\textit{s}- \textit{p}-cation and \textit{p}-anion orbital contribution.
Spin-orbit interaction appears to specially alter dispersion and binding energy
of states of the topmost valence bands lying at . By spin-orbit, it is
favored hybridization of the topmost \textit{p}-valence band with deeper
and flatter \textit{p}-\textit{p} bands and the valence-band minimum at
is raised towards the Fermi level since it appears to be determined by
the shifted up \textit{p}-\textit{p} bands.Comment: 7 text pages, 6 eps figures, submitted to PR
Ionic liquids at electrified interfaces
Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules
- …