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Calculated Electrocapillary Curve for a Molten Salt 

J. Goodisman' and S. Amokrane 

Department of Chemlsby, Syracuse Universltv, Syracuse, New York 13210 (Received March 25, 1982; In Final Form: July 13, 1982) 

If bulk properties of simple molten salts may be reasonably well understood in terms of the primitive model, 
the situation with respect to surface properties is less satisfactory. It has been shown that a simple model for 
the distributions at the free surface of a molten salt can give surface tension and surface energy in reasonable 
accord with experiment, provided that a factor guaranteeing local electroneutrality is introduced. In this model, 
properties are given in terms of bulk-salt distribution functions, for which the primitive model is used. The 
present work extends this model to the electrocapillary curve, i.e., variation of surface tension with surface 
charge density. The calculations are like those for the free surface, corresponding to the point of zero charge. 
The local electroneutrality correction, while extremely important for the magnitude of the surface tension, is 
much less important for its variation with surface charge, and hence the electrical capacitance. Our capacitances, 
derived from surface charges and potential drops derived from our model, are much too small, whereas the 
Gouy-Chapman model gives values which are much too large. The calculated variations of surface tension 
and potential drop with surface charge do not satisfy the thermodynamically derived Lippmann equations; 
neither does one obtain the same surface tension from different thermodynamically equivalent formulas. In 
order to understand the reasons and to improve the situation, we show how thermodynamic consistency may 
be restored to our model. Capacitances are still numerically much smaller than those reported experimentally. 

I. Introduction 
Molten salts are important in batteries and other tech- 

nological applications, but are also of great theoretical 
interest. They constitute the simplest electrolytes, in- 
volving only two charged species, with no uncharged 
species (e.g., the solvent in an electrolytic solution), and 
with both species describable by classical mechanics (un- 
like the conduction electrons of metals). Although the 
precise form of the forces between ions, whether they can 
be assumed pairwise additive,l and whether one needs to 
introduce a dielectric constant to represent their polariz- 
ability, is not completely settled, it is clear that treatment 
of the Coulombic attractions and repulsions constitutes 
a major part of the theoretical description of these systems. 
Indeed, many bulk properties of the molten salts can be 
understood in terms of the primitive model, which con- 
siders the ions as charged hard spheres in a dielectric 
medium.2-8 

Understanding of surface properties is less advanced 
than understanding of bulk properties, although surface 
properties are of primary importance in electrochemistry. 
One of the basic concepts of modern electrochemistr?l2 
is the polarizable electrode, a charged interface in which 
a change in surface charge density is accompanied by 
changes in the surface tension and in the potential drop 
across the interface, but not by current flow, so that it 
behaves like a capacitor. Such a system is usually exem- 
plified by mercury in aqueous solution, but can be realized 
also by a metal in a molten salt.13-15 The Lippmann 

e q ~ a t i o n ~ J ' J ~ ~ '  relates the variation of surface tension with 
potential drop (electrocapillary curve) to the surface 
charge. The surface tension can be measured directly and 
also the derivative of surface charge with potential drop, 
which is the capacitance (although the meaning of some 
of the measurements has been criti~ized'~). Measured 
properties are actually those of the interface as a whole, 
but conventional electrochemical wisdom is that the 
metal's contribution to certain properties is unimportant.18 
For example, if one distinguishes between charged com- 
ponents of the salt and those of the metal, one shows" that 
the potential drop consish of salt and metal contributions 
(which are not necessarily the same as for free salt and 
metal surfaces), so that, if the metal's capacity is large, the 
capacity of the interface is essentially that of the salt. 
(This is emphatically not the case for the surface tension 
of the interface, which is dominated by that of the metal.) 

A number of approaches to learning about the polariz- 
able molten salt-metal interface are being taken. Monte 
Carlo and molecular dynamics simulations for the liquid- 
vapor interface of molten salts have been performed, giving 
information on the ionic distribution functions near the 
surface.lg These calculations have recently been extend- 
eda to the interface at a charged repulsive wall (electrode) 
with surface tension and capacitance being calculated. 
Various statistical mechanical approaches are possible but 
have so far usually been tried in the electrolyte, rather than 
the molten salt, regime of the interface. The density 
profile, as well as the two-particle distribution functions 

(1) R. 0. Watts and I. J. McGee, "Liquid State Chemical Physics", 

(2) M. Gillan, B. Larsen, M. P. Tosi, and N. H. March, J. Phys. C, 9, 

(3) G. Stell and B. Larsen, J. Chem. Phys., 70, 361-9 (1979). 
(4) J. C. Rasaiah, J. Chem. Phys., 52, 704 (1970). 
(5) B. Larsen, J. Chem. Phys., 65, 3431-8 (1976). 
(6) M. C. Abramo, C. Caccamo, G. Pizzimenti, M. Parinello, and M. 

(7) L. B. Bhuiyan, Mol. Phys., 38, 1737-47 (1979). 
(8) C. Y. Mou and R. M. Mazo, J. Chem. Phys., 65, 4530-6 (1976). 
(9) J. O.'M. Bockris and A. K. N. Reddy, "Modem Electrochemistry", 

Plenum, New York, 1970, Chapter 7. 
(10) R. Parsons in "Comprehensive Treatise on Electrochemistry", J. 

O.'M. Bockris, B. Conway, and E. Yeager, Ed., Plenum, New York, 1980. 
(11) C. A. Barlow, Jr., in 'Treatise on Physical Chemistry", H. Eyring, 

Ed., Academic Press, New York, 1970. 
(12) A. J. Bard and L. R. Faulkner, 'Electrochemical Methods", Wiley, 

New York, 1980, Chapter 1. 

Wiley, New York, 1976, Section 10.4. 

889-907 (1976). 

P. Tosi, J. Chem. Phys., 68, 2889-95 (1978). 
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(13) D. Inman, J. E. Bowling, D. G. Lovering, and S. H. White, Spec. 
Period. Rep.: Electrochem., 4, 158 (1974). 

(14) M. V. Smirnov, V. P. Stepanov, and A. F. Sharov, Elektrokhimiya 
12,600-2 (1976) [Sou. Electrochem., 12,575-7 (1976)l; 8,999 (1976); Dolk. 
Akad. Nauk., 197, 631 (1976); Elektrokimiya, 12, 1728 (1976). 

(15) R. J. Heus, T. Tidwell, and J. J. Egan in "Molten Salts: Char- 
acterization and Analysis", G. Mamantov, Ed., Marcel Dekker, New York, 
1969, pp 499-508. 

(16) B. Conway, "Theory and Principles of Electrode Processes", 
Ronald Press, New York, 1965. 
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needed for a calculation of surface tension, can be ex- 
pressed in terms of the direct correlation functions c,, of 
the interface, and the short-range character of the ci, 
suggests that a reasonable approximation is to replace 
them by the corresponding functions for the bulk. This 
has been done21-25 by using a variety of approximations 
for the bulk functions, coupled with various approxima- 
tions to the integral equation determining the wall-particle 
correlation functions (density profiles). Tests have been 
for the primitive model; indeed one flaw of this model, the 
replacement of the solvent by a continuous dielectric, 
becomes very important when the model is applied to the 
molten salt interface, since the dielectric constant cannot 
be separated from the ion density profile. The extension 
of density functional theories to systems involving Cou- 
lombic interactions2&% has also led to calculations of some 
properties of the liquid-vapor interface for molten s a l t ~ . ~ a  
By use of a number of approximations for the response 
functions in the surface, these theories give expressions 
which allow the use of properties of the bulk to calculate 
properties of the surface. Our own work3,-% has involved 
generating approximate distribution functions for the 
surface from those for the bulk and calculating surface 
tensions and surface energies for the free surface. 

I t  is this approach that we extend, in the present paper, 
to calculation of the eiectrocapillary curve (surface tension 
as a function of surface charge) of the salt part of the 
interface. A t  the potential of zero charge (pzc), the model 
for the salt (in contact with a metal electrode) is identical 
with that for the salt in contact with its vapor (free sur- 
face). This is possible if the ion density profiles are so 
sharp that the repulsion due to the metal does not change 
their shape much. Some  worker^'^^^^ have argued, on the 
basis of electrocapillary measurements, that the alkali 
halide surface in the electrode is not much changed, rel- 
ative to the free surface, by the metal a t  the pzc. At 
potentials other than the pzc, it is difficult to perform 
calculations for the salt alone, since it carries a net charge. 
Thus the metal in the interface is represented in our 
calculations by a charged plane and calculated results for 
the globally neutral interface are compared to the corre- 
sponding properties for an ideal capacitor, formed from 
two charged planes. We will require knowledge of the bulk 
correlation functions of the salt, which are obtained from 
the generalized mean spherical approximation for equal 
sized charged hard spheres.8,36 The simpler mean 
spherical approximation, which has been extended to 
unequal ion sizes,7,37~38 has serious deficiencies in the pair 
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(21) D. H. Henderson and L. Blum, J. Chem. Phys., 69, 5441 (1978). 
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(1971)l. 

1355-72 (1980). 
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(36j G. Stell and S. F. Sun, J. Chem. Phys., 63, 5333-41 (1975). 
(37) M. C. Abramo, C. Caccamo, and G. Pizzimenti, Mol. Phys., 41. 
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distribution f ~ n c t i o n s . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Thus the salt is being 
considered in the context of the restricted primitive model. 
The dielectric constant is taken as unity, which is con- 
sistent7 with rigid ions; for a surface problem, there are 
difficulties, related to treatment of image forces, attached 
to using a value other than ~ n i t y . ~ , , ~ ,  Problems arising 
from the assumptions about the bulk salt, and from other 
aspects of the model, are discussed in section VII. 

Section I1 presents our model for the surface and the 
formulas used for calculation of the surface tension of the 
charged interface. The Fowler model for the distribution 
functions, and our modification of it for charged-particle 
systems, are presented. The essence of the modification 
is satisfaction of a constraint of local electroneutrality; the 
method for accomlishing this is discussed in section 111, 
and results for the variational calculations of the 
“electroneutrality functions” are presented. The calcula- 
tion of surface tensions is carried out in section IV. In 
section V, the results are presented, and the Lippmann 
equation is discussed. 

One aim of statistical mechanical calculations like the 
present one must be to make connection with the ther- 
modynamic description, which defines surface properties 
in a way different from ours; the thermodynamic defini- 
tions do not deal with the actual physical description of 
surface charges, etc. On the other hand, internal con- 
sistency is built in, whereas statistical mechanically cal- 
culated quantities do not necessarily satisfy thermody- 
namic relations, which become a test of the consistency 
of our assumptions. The Lippmann equation is one of 
these thermodynamic relations; as shown in section V, we 
find it not to be verified. A discussion points out a problem 
with the Born-Green-Yvon equilibrium condition, which 
leads to other surface tension formulas and redefined 
density profiles. None of our models give capacitances in 
accord with experiment. Section VI considers other ways 
in which the model may be improved and directions for 
future work. 

11. Calculation of Surface Properties 
The Kirkwood-Buff formula42 gives the surface tension 

in terms of the interparticle forces and the two-particle 
distributions p!;), where pi;) (?,, y2) Gl Gz gives the number 
of pairs of particles such that a particle of species i is in 
the volume element dr‘, at  7, and a particle of species J is 
in dF; at T2. It  is assumed that only pairwise interactions 
are present. We write 

Pi;) = ~~l)(~l)~~l)(~z)g,~(~l,~~) (1) 

where PI(’) is the one-particle density (density profile) of 
species i, depending only on the coordinate perpendicular 
to the interface, and the correlation function g,, depends 
on 7, and F; in the interface. In the bulk, p!” is, of course, 
a constant and g, can depend only on the interparticle 
distance rI2.  The Fowler approximat i~n~*-~  replaces the 
g, in (1) by the corresponding bulk functions so that, given 
the profiles, insertion of (1) into the Kirkwood-Buff for- 
mula allows the calculation of the surface tension in terms 
of the properties of the bulk fluid. (Modern theories of 

(39) J. P. Hansen and J. J. Weis, Mol. Phys., 33, 1379-85 (1977). 
(40) E. Waisman and J. L. Lebowitz, J. Chem. Phys., 52, 4307-9 

(41) D. Henderson and L. Blum, J. Electroanal. Chem. Interfacial 
(1970). 

Electrochem., 111, 217-22 (1980). 
(42) J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 17, 338 (1949). 
(43) R. H. Fowler, Proc. R. Sot. London, Ser. A ,  189, 229 (1937). 
(44) S. Toxvaerd in “Statistical Mechanics“, Vol. 2, K. Singer, Ed., The 

Chemical Society, London, 1975. 



Calculated Electrocapillary Curve 

the interface make the same replacement for the direct 
correlation function45 which seems more reasonable be- 
cause of the shorter range of this function.) While rea- 
sonable results can be obtained for some fluids by this 
procedure, molten salts are emphatically not among 
them.31 The problem seems to be due to the Coulombic 
interactions, which impose4 a local electroneutrality con- 
dition on the correlation functions. 

The local electroneutrality condition is that the net 
charge around an ion should be equal and opposite to the 
ion's charge. (It is not implied that the net charge density 
be zero everywhere; other authors have referred to this as 
"local electroneutrality".) This is not obeyed by the Fowler 
approximation because the surface, as expressed by the 
factor pi (z )  in (l), truncates the two-particle di~tr ibut ion.~~ 
We have d i s c u s ~ e d ~ ~ ~ ~ ~  modification of the Fowler ap- 
proximation to guarantee local electroneutrality. Great 
improvements in surface tension and surface energy for 
the free (electrically neutral) surface of a molten salt have 
been obtained on introducing this m~di f ica t ion .~ ' -~~ 
Croxton and M ~ Q u a r r i e ~ ~  found imposition of a similar 
condition on their closure of the Born-Yvon-Green (BYG) 
equation for charged spheres a t  a charged surface led to 
improved results and suggested a similar modification 
should ameliorate theories which use bulk c. .  for the sur- 
face. Local electroneutrality was also usedih in a theory 
for getting (bulk) gij  of charged hard spheres in terms of 
gij for neutral spheres. In the present work, we extend the 
electroneutrality formulas to the salt surface in the pres- 
ence of an external field. In this case, a separation of 
positive and negative charges in the salt leads to a double 
layer and a potential drop across the surface region. As 
for the free surface, our model yields a formula for surface 
tension which involves integrals over the bulk distribution 
functions; the function introduced to guarantee local 
electroneutrality is also determined by properties of the 
bulk distribution function (section 111). 

Our bulk salt is described by the restricted primitive 
model: anions and cations are oppositely charged hard 
spheres of equal size with t,he dielectric constant taken as 
unity. The distribution functions for the bulk are calcu- 
lated according to the generalized mean spherical ap- 
proximation (GMSA).36 Although the simpler mean 
spherical approximation (MSA) seems to give reasonable 
values for thermodynamic p r o p e r t i e ~ ~ , ~ ~  and although the 
MSA has been solveds for hard spheres of different sizes 
we do not use it here because it does not describe well the 
detailed shapes6,36i37*39 of the gij  which are central to our 
calculations. We note that other extensions of the MSA 
for the primitive model have been proposed and stud- 
ied.5@54 While first developed and tested for electrolyte 
solutions, the GMSA seems to work better8,53 for higher 
concentrations and thus for molten salts (with dielectric 
constant unity). 

As for the assumption of equal sizes for cation and anion 
cores, it seems not to be a bad one for bulk properties even 
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(45) R. Evans, Adu. Phys., 28, 143-200 (1979). 
(46) F. H. Stillinger, Jr., and R. Lovett, J. Chem. Phys., 48, 3858 

(47) A. J. Burshtein, Adu. Colloid Interface Sci., 11, 315-74 (1979). 
(48) T. L. Croxton and D. A. McQuarrie, Mol. Phys., 42, 141 (1981). 
(49) T. L. Croxton and D. A. McQuarrie, J. Phys. Chem., 83, 1840 

(1968); 49, 1991-4 (1968). 

(1979). 
~ 

Lett., 58, 351-4 (1978). 
(50) M. Medina-Noyola, D. McQuarrie, and W. Olivares, Chem. Phys. 

(51) J. S. Haye and G. Stell, J. Chem. Phys., 67,524-9 (1977). 
(52) B. Larsen, G. Stell, and K. C. Wu, J. Chem. Phys., 67, 530-6 

(1977). 
(53) G. Stell and B. Hofskjold, J. Chem. Phys., 74, 5278 (1981). 
(54) M. Medina-Noyola and D. A. McQuarrie, J. Chem. Phys., 74, 

3025-32 (1981). 

I 
I 2 3 4 p/o. 

Flgure 1. Calculated two-particle bulk distribution functions from the 
generalized mean sphrical approximation. u is the hard-sphere dlam- 
eter. gs and gD are defined In eq 2 and 3. 

if the ions are actually of different sizes because, except 
where the disparity in ion sizes is very large (Li salts), ions 
of opposite charge are much more likely to approach to 
small distances than like-charged ions.3-5*55'60 The core 
size parameter we use in our calculations is in fact roughly 
appropriate for NaC1.5*6*32v33 However, the difference in ion 
sizes must be important in determining the structure of 
the surface, since this difference should produce a double 
layer and potential drop even for the free surface or for 
the interface at  the potential of zero charge. The larger 
ions (usually the anions) will tend to protrude from the 
free surface, forming a layer of charge, and the absence of 
electric fields in the bulk implies an oppositely charged 
layer must exist below it. For ions against a hard wall (the 
metal of the electrode) the reverse should obtain. Sluckinm 
has recently discussed this effect using a perturbation 
theory applied to a treatment of these systems by the 
density functional formalism.Ba Since our model assumes 
identical density profiles for cations and anions in the 
absence of an external field, it seems most reasonable to 
say we are describing a fictitious salt for which anions and 
cations both have a hard-sphere diameter of 2.55 A, rep- 
resenting the averaging of anion and cation diameters for 
NaC1. 

The radial distribution functions for a bulk liquid whose 
particles interact by Coulomb plus hard-sphere potentials 
are calculated according to the generalized mean spherical 
approximation (GMSA) with the formulas of Stell and 
c o - w ~ r k e r s ~ ~ ~ ~ ~ ~ ~  which generate gD and gs where 

(2) 

(3) 
(superscript b refers to bulk). The distribution functions 
we obtained are given in Figure 1. In the absence of 
external field, i.e., a t  the potential of zero charge, the 

gD(r) = l / z [d - ( r )  - g$+(r)l 

gS(r) = f/2[g$-(r) + g$+(r)I 

(55) F. H. Stillinger, Jr., and R. Lovett, J. Chem. Phys., 48, 3858-68 

(56) M. Blander in 'Molten Salts: Characterization and Analysis", G. 

(57) M. Blander, Ado. Chem. Phys., 11, 83 (1967). 
(58) H. Bloom and I. Snook in "Modern Aspects of Electrochemistry", 

(59) E. Waisman and J. L. Lebowitz, J. Chem. Phys., 56,3093 (1972). 
(60) B. Larsen, Chem. Phys. Lett.,  27, 47-51 (1979). 

(1968). 

Mamantov, Ed., New York, 1969, pp 1-54. 

Vol. 9, Plenum, New York, 1974, pp 159-238. 
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Flgure 2. Ion and metal charge densities for use in two-particle 
distributions, eq 1. 

expression for the surface tension does not involve 2, so 
it was not calculated in our previous work. The local 
electroneutrality conditions will be imposed by modifying 
gD, leaving g' unchanged. Away from the potential of zero 
charge, where positive and negative ion distributions are 
different, g, __ can differ from g- +, and g, + from g- -. The 
quantities g+ - - g+ + and g- + - g-- can thus be different 
in the surface region, and two functions will be determined 
to guarantee local electroneutrality. We write 

g+ -(?1?2) + g+ +(F;?J = 2gS(rlZ) ( 4 4  

g- + g-..(?l?2) = 2gS(rI2) (4b) 

and find f+ and f- from the electroneutrality conditions. 
The solution of the equations is discussed in the next 
section. 

The one-particle densities remain to be specified in (1). 
The simplest assumption is to take them as stepfunctions 
as was done for some of our calculations of the free sur- 

The abrupt decrease of the density to zero is 
more appropriate for a fluid near a repulsive wall than for 
a free surface (for which an attempt to consider other 
profiles was madeM). It must be admitted that a condition 
exists on the contact density at a hard which is not 
satisfied by the assumption of stepfunctions. Furthermore, 
a fluid of particles with repulsive cores should have an 
oscillating density profile at a wall and molecular dynamics 
calculations28 for a molten salt show that the presence of 
Coulombic forces does not remove the oscillations (al- 
though charge ordering or layering seem to be absent, even 
for a charged wall). Of course, our pi:) do not satisfy the 
BYG equations with stepfunctions for the pi", and there 
is some ambiguity in the definition of surface tension when 
such an inconsistency is Our use of stepfunction 
profiles for surface tension calculation is based on a hope 
that details of the profiles will average out (see section VI 
for generation of oscillatory profiles from the model). 

The charge distribution is shown in Figure 2 which im- 
plies that the centers of the first layer of ions of the salt 
lie in the plane z = 0. The displacement a is determined 
by the charge density according to 

a p e / 2  = -qM (6) 

which represents global electroneutrality, q M  being the 
charge per unit area on the "metal" and p / 2  the density 
of anions or cations in bulk salt. The value of d,  which 
determines the location of the metal's charge, should be 

(61) D. Henderson and L. Blum, J. Chem. Phys., 69, 5441 (1978); J. 

(62) J. Goodisman, Phys. Reu. A ,  19, 1'717 (1979). 
Electroanal. Chem., 102, 315 (1979). 

related to the distance of closest approach between ions 
of the salt and the metal surface. If the ionic radius of the 
metal ions is R M  and the charge density q M  is supposed 
to lie on the first layer of ions, the estimate for d would 
be RM + lIzu, where u is the ionic core diameter. Finally, 
we note that all properties should be unchanged by a 
change in the sign of all charges, so the electrocapillary 
curve is symmetric about the pzc. 

111. Imposing Local Electroneutrality 
The local electroneutrality condition is that the net 

charge surrounding a positive (negative) ion at  z should 
be equal to one negative (positive) charge. This includes 
the charges on the metal as well as the charges of other 
ions in the salt. In terms of the one- and two-particle 
distributions, the condition for a positive ion is 

e j d T z  Pd(?z)  = -e (7)  

Here, the charge density of the metal is 
pd(72) = ~ M ~ ( Z Z  - d )  (8) 

and of course is uncorrelated (g = 1) with the ions of the 
salt. On introduction of the assumptions of eq 4 and 5, 
eq 7 becomes 

The corresponding equation for the charge around a 
negative ion is 

where only values of z1 I -a are of interest. If pd = 0 and 
p+ and p- are identical for the potential of zero charge, (10) 
becomes the same as (9) and gs does not appear. 

Equations 9 and 10 may be simplified by writing gs as 
1 + hs. The terms in 1 represent the total charge of the 
salt, which is equal and opposite to the total charge on the 
metal: 

j [ p + ( z )  - p-(z)l dz = -gM = - j p d ( z )  dz 

Thus the term in p d  disappears and the local electroneu- 
trality equations do not involve the metal charge distri- 
bution. Equation 9 may be written, when stepfunctions 
are inserted for the density profiles, as 

2 7 r p x I d x  [8(-2x + 
21) + 8(-2x + 21 - ~ ) ] f + ( ~ ) G t f ) ( 2 l ~  - 211) - 1 + 

7rpLmr dr h s ( r ) l z l + r  zI-r dz, [f3(-zz - a) - O(-z,)] = 0 (11) 

We have introduced the abbreviation Gg' for the first 
moment of gD. When z1 is large and negative, the terms 
in hS vanish in (11) because hS is of limited range. The 
equation and that corresponding to (10) become 

27rpJ-dx -m 2f+(x)Gtf'(2lx - ~ 1 1 )  = 1 (12) 
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Figure 3. Calculated electroneutrality functions for a = 0. lo. Solid 
curve is f - ,  points + are f + ,  which is generally close to f - .  

since the presence of Gg), which vanishes for large argu- 
ments, means only values of x which are large and negative 
contribute. Equation 12 is satisfied by f&) = 1, because 

L - d r  r2gD(r) = (47rp)-’ (13) 

Therefore f&) - 1 as z - -a. 
determining parameters in a trial function 

The functions f+ and f- are determined variationally, by 

f(z) = ~ c i z i e - ~ x , ( z - z , ) 2  + 1 

so as to minimize the integrated square of the deviation 
from (A previous treatment (for uncharged surface) 
accomplished this34 by representing the electroneutrality 
function f by a cubic in each of a large number of intervals.) 
The resulting functions are oscillatory, as might be ex- 
pected, and generally all resemble each other. The terms 
dependent on the field, through a in (ll), are in fact quite 
small. Some of these results are shown in Figure 3. We 
may note that our correlation functions (eq 1,4 ,  and 5) do 
not guarantee the symmetry 

i 

between the two-particle distributions. The symmetry 
would require g+ - = gs + gy to be identical with g-+ = gS 
+ g? and hence f+[(zl + z2)/2] to equal f-[(zl + 2,)/2]. 
Since in fact f+ and f- are only slightly different, the sym- 
metry is effectively assured. An idea of how well one can 
satisfy the electroneutrality conditions is gained from the 
sum of the squares of the values of (11) or (12) evaluated 
for 100 values of zl. It must be noted that there is always 
a doubt63 whether a solution to an equation like (11) ac- 
tually exists; in fact, the physics of the present situation 
mean that a mean-square solution, minimizing the mean- 
square deviation of the left side from zero, is what we 
actually should seek. 

The calculations we perform in the present paper are 
for a = 0 . 0 5 ~  and 0 . 1 0 ~ .  The smaller value corresponds 
to a charge per unit area )qM1 of 9634.3 esu/cm2 or 3.2136 
pC/cm2. 

(63) G. F. Miller, “Fredholm Equations of the First Kind”, in 
‘Numerical Solution of Integral Equations”, L. M. Delves and J. Walsh, 
Ed., Clarendon, Oxford, 1974, p 195. C. T. H. Baker, “The Numerical 
Treatment of Integral Equations”, Clarendon, Oxford, 1977, Chapter 5. 

TABLE I:  Contributions of Hard-Sphere Interaction 
to Surface Tension (dyn/cm) 

Yfi.&?’(O) YfI‘$gD(o) YHS 
- 
a 

0.00 -306.43 0.00 - 306.43 
t 0 . 0 5  -305.66 1.12 -304.54 
io .10  -303.38 4.74 -298.64 

IV. Calculation of Surface Tension 

a multicomponent fluid is 
The Kirkwood-Buff formula for the surface tension of 

where i and j run over species and uij is the interaction 
potential between a particle of species i and a particle of 
species j ,  assumed to be a function of the interparticle 
separation only. We have three kinds of particles: positive 
ions, negative ions, and charges of the “metal” at  d. There 
are no,correlations between particles of the third kind and 
either of the first two, or between particles of the third 
kind; in such cases, we write ~ 1 3 7 ~ 7 ~ )  = pi(zl)pj(zz), whereas 
pa!;) = pi(zl)pi(z,)g;j where correlations exist. The interac- 
tion potentials uij consist of the electrostatic interaction, 
which is present for all particles, and the hard-sphere 
repulsion, for particles of the molten salt only. Thus the 
surface tension has two parts 

Y = YHS + YEL (15) 

The hard-sphere part, on introducing our assumptions 
corresponding to the two parts of uij. 

for the gij, is, after a change of variables 

(16) 

Here /3 = l /kT,  u = 1/2(21 + z 2 ) ,  w = z2 - zl, and we are 
using the usual treatmenP4 of the hard-sphere term, re- 
quiring an integration by parts in rI2.  After some further 
algebra, we find 

Y f l Q = - -  $(: - - - + -  “,“’ T) (17) 

YfiQ = 

(64) J. G. Kirkwood in ’Phase Transition in Solids”, R. Smoluchowski, 
Ed., Wiley, New York, 1951, p 67. 
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TABLE 11: “Ideal Capacitor” Contribution to Surface Tension for Various Values of d 

The Journal of Physical Chemistry, Vol. 86, No. 25, 1982 Goodisman and Amokrane 

a 0.75 1.00 1.25 1.50 1.75 2.00 d / o  = 0.50 - 

0.00 0 0 0 
0.05 -15.367 -22.803 -30.239 
0.10 -63.453 -93.196 -122.940 
charged planea -59.487 -89.230 -118.974 

For q M  = 19268.6 esu /cmz .  

0 0 0 0 
-37.675 -45.111 -52.547 -59.983 

-152.683 -182.426 -212.170 -241.913 
-148.717 -178.460 -208.204 -237.947 

with va = 1/2(21 + z2 )  and ci = a/a.  We have assumed d 
C 1. These two contributions are given in Table I. It  is 
seen that as ci moves away from zero, the charge due to 
& is overcompensated by the term in &. Since this 
term arises from interactions between particles of the salt, 
it  is the same for -d as for ci. 

The electrostatic contribution to the surface tension, 
using our assumptions for the pi:), is conveniently written 

YEL = 2 Te2 S d z l  Jdz2Jmdrl2 (1 - 5) X 
12121 

where hij = gi, - 1. The electric charge density p e  is p +  - 
p -  + p M  and p M ,  the charge density of the metal, is q@(z 
- d) .  The term in pe, involving no interparticle correlations, 
is 

Y& = -- ne’ S d z l  S d z ,  S m d r 1 2  (1 - 
2 lklll 

!y + ci2a2d ) (20) 

The second expression in (20), obtained by integrations 
by parts and use of the Poisson equation, 4rpee = a/&, 
is the classical expression for surface tension in terms of 
the electrostatic field E. The insertion of the electric field 
for the present problem immediately yields the last ex- 
pression of (20),  which may be written in terms of q by 
using the formula (6) for a. The rest of YEL is rewritten 
by putting hi, = gi, - 1, inserting our assumptions for the 
gij, and separating contributions of hS and gD.  Thus 

YEL = Y& + Y ~ L  + Y@L + 

where 

Y#L = 

ne2p2 a 
P-(Zl)l[P-(ZZ) - P + ( Z 2 ) 1  = --s, dr r2hS(r) 

16 

TABLE 111: Other Electrostatic Contributions to 
Surface Tension (dynlcm) 

0.00 0 226.83 176.83 
i0.05 0.031 225.82 178.14 
so.10 0.248 222.80 171.25 

The division into two parts is made to isolate the elec- 
troneutrality correction, by writing f* = 1 + f* - 1, so that 

Finally, -&L, which must be evaluated by numerical qua- 
dratures, has the expression 

where we abbreviate moments of g D  by 

Expression 20 for &! corresponds to an idealized ca- 
pacitor in that interparticle correlations are not present. 
It is the only term which depends on d ,  the distance of the 
charged plane from the density profiles of the ions of the 
salt. We calculate it for several values of d between I , / p  
and 2a, giving the results of Table 11. For this term we 
use ci > 0 for both positive and negative surface charge, 
thus keeping constant the distance of closest approach 
between the metal and an ion of the salt. The contribution 
of ci3 is of only minor importance. Without it 

T& = - r d ( 2 q d 2  
corresponding to the energy of a plane capacitor. Using 
this with a = 0.10, we calculate the last line of Table 11. 
The term in hS, &, is easily calculated for la1 < a, since 
h8(r) is -1 for r < a. We have 

ne2p2 u3 

Y#L = 7 5 
giving the small contributions tabulated in Table 111. The 
term -& is, since gD(r) vanishes for r < a 

The second moment of gD(r) is 1/ (4np)  and the zeroth and 
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TABLE IV : Calculated Surface Tensions (dyn/cm) 
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a d / o  = 0.5 1.0 2.0 0.5 1.0 2.0 - 

0.05 
0.10 

-94.06 -108.93 -138.67 84.08 69.21 39.47 
-139.04 -198.53 -317.50 32.21 -27.28 -146.25 

TABLE V: Calculated Surface Tensions and Potential Drops 

potential drop, statvolt surface tension, dyn/cm charge 
density, 

a 0.5 1.0 2.0 0.5 1.0 2.0 esu/cm2 d l o =  - 

0 0.0 0.0 0.0 0.0 97.23 97.23 97.23 
t0.05 t9634.3 t1.62080 X 53.1644 X t6.2517 X 84.08 69.21 39.47 
tO.10 t19268.6 +3.39567 X t6.4832 x t12.6577 X 32.21 -27.28 -146.25 

minus second moments were evaluated by P a ~ t o r ~ l ~ ~  giving 
-& as tabulated in Table 111, which represents close to 
quadratic dependence on Li. The term -&) is also given. 

The last term vanishes without the electroneutrality 
correction, i.e., when f+ = f- = 1. Thus it is of interest to 
calculate surface tensions in the absence of -&, as shown 
in Table IV. The unreasonable negative surface tensions 
have been discussed p r e v i o u ~ l y . ~ ~ . ~ ~  The electroneutrality 
correction & makes the surface tension positive at the 
pzc. For large electrode charge one still gets negative 
values, but one must remember that the actual surface 
tension of the interface is that of the salt plus that of the 
metal. The latter can be several hundred dynes/centim- 
eter a t  the pzc, and, as the interface is charged, additional 
contributions from the metal may arise. Our results for 
surface tensions and potential drops are given in Table V. 

V. Surface Tensions and Lippmann Equation 
The surface tension at the point of zero charge is what 

we calculate for the free surface, 97.23 dyn/cm. In com- 
paring it to experimental values for the free surface of 
alkali halides, one should recall that we are assuming there 
is no double layer for the electroneutral surface, which 
would hold for equal anion and cation core sizes, whereas 
the actual cation-anion radius ratio for NaCl is far from 
1. The ratios for NaC1, KC1, and RbCl are 0.52,0.73, and 
0.82; surface tensions at  1128 K are 111.3, 92.8 and 86.2 
dyn/cm, respectively.M The effect of the size asymmetry 
on surface tension is a matter for subsequent investigation. 
I t  may be noted that, if it is important in determining 
surface structure, it should produce oppositely directed 
double layers for the free surface (larger ions to the outside 
of the salt) and for the surface of the salt in the interface 
(larger ions away from the metal, i.e., toward bulk salt). 
However, surface energies and surface entropies may well 
be independent of the sign of the surface double layer. 
Smirnov, Stepanov, and S h a r o ~ ~ ~ l ~  have argued that the 
metal at the pzc does not alter the surface structure of the 
salt from that of the free surface, since -yfree and +ymeM-dt 
change in a parallel way as one goes from one alkali 
chloride to another. Defining the work of adhesion Wa as 
the surface tension of the metal alone plus the surface 
tension of the salt alone minus the interfacial tension of 
the metal-molten salt interface at the pzc, they find@ 
values for Wa of 139 dyn/cm2 for Pb  in alkali chlorides, 
134 dyn/cm2 for In, and 105 dyn/cm2 for Bi (although 

(65) R. W. Pastor, Thesis, Syracuse University, 1977. 
(66) G. Janz, 'Molten Salts Handbook", Academic Press, New York, 

1967. 
(67) V. P. Stepanov and M. V. Smirnov, Dokl. Phys. Chem., 227,266 

(1976) [translation of Dokl. Akad. Nauk SSSR, 227,403 (1976)l. 
(68) M. V. Smirnov, V. P. Stepanov, A. F. Sharov, and V. I. Min- 

chwnko, Sou. Electrochem., 8,961 (1972) [translation of Electrokhimiya, 
8, 994 (1972)l. 

TABLE VI: Properties of Electrocapillary Curves 
9, - 

a d / o  Y. dsn/cm esu/cm* V, statvolt 
0 97.23 0 
0.05 0.5 84.08 9634 0.001 620 8 
0.05 1.0 69.21 9634 0.003 164 4 
0.05 2.0 39.47 9634 0.006 251 7 
0.10 0.5 32.21 19269 0.003 396 0 
0.10 1.0 -27.28 19269 0.006483 
0.10 2.0 -146.25 19269 0.126577 

experimental errors in the Bi surface tension are large). 
Wa is quite independent of the alkali cation, and only 
slightly dependent on the anion.67 On the other hand, 
Ukshe et al.69 have interpreted their electrocapillary 
measurements in terms of a significant influence of the 
metal on the top layer of the salt structure. They conclude 
that each salt has a different structure in the double layer, 
according to the cation-cation radius ratio. 

The differential capacitance of the interface" is given 
by (dq/dV),,,,, where CL represents the bulk chemical po- 
tentials of the species, Le., bulk compositions is to be held 
c ~ n s t a n t . ' ~ ~ ~ ~  With stepfunctions for anion and cation 
densities, the electric field is 2?rep(z + Lia) for z between 
-6a and 0, 2irep6a for z between 0 and d,  and zero else- 
where. Thus 

V = 2nepLia(d + y2Lia) (25) 

where Li is taken positive. These potentials are given in 
Table VI. With q = ape12 (the convention here is that 
q is the charge per unit area on the salt and V the electrical 
potential in bulk salt minus the electrical potential in bulk 
metal), we get 

1 / zPe  - dq dq/da _ -  --- 
dV dV/da 2?rep(d + '/zlal) + ireplal 

Thus the capacitance at the point of zero charge or elec- 
trocapillary maximum (a = 0) is simply (47rd)-l, which is 
the value for an ideal capacitor. Capacitances for a # 0 
are less than ideal value by a factor of d / ( d  + lal). 

The capacitance (4?rd)-', equal to 6.935,3.467, and 1.7337 
pF/cm2 for d = 0 . 5 ~ ~  a, and 2a, respectively, is much 
smaller than any of the values measured by Ukshe et al.69 
for Pb-molten salt interfaces. For Pb-NaC1, at 1093 K, 
a value of 45 rF/cm2 is reported, which seems typical of 
values for molten salts, although there is some question 
of the importance of Faradaic contributions to the ca- 
pacity,72 and of the contribution of the metal as well as of 

(69) E. A. Ukshe, N. G. Bukun, D. J. Leikis, and A. N. Frumkin, 

(70) A. Sanfeld, "Introduction to the Thermodynamics of Charged and 

(71) J. P. Badiali and J. Goodisman, J.  Phys. Chem., 79, 223 (1975). 

Electrochim. Acta, 9, 437 (1964). 

Polarized Layers", Wiley-Interscience, London, 1968. 
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the salt. To obtain 45 pF/cm2 from our model, we would 
need d = 0 .077~ .  It appears that the above calculation is 
not capable of accounting for the measured values. How- 
ever, this calculation obtained q and V by assuming 
stepfunction densities for the ions; as discussed below, 
these are not the only one-particle densities one could use. 

According to the Lippmann e q ~ a t i o n ~ ' J ~ ~ ~ ~ * ~ ~  the surface 
charge density can be obtained from the electrocapillary 
curve: 

4 = - ( a y / a V ) p , T , ~  (26) 

Thus, we use the data of Table VI for d = 0 and f0.05 to 
write 

Y = Ypzc - b v 2  (27) 

For the three values of d, we find b = 5.0057 X lo6, 2.7982 
X lo6, and 1.47785 X lo6 cm-', respectively. The resulting 
capacitances at the point of zero charge are given by 

The Journal of Physical Chemistry, Vol. 86, No. 25, 1982 

c = -aZy/av2 = 2b 

In mks units, the three values of b give capacitances of 
11.124, 6.218, and 3.2844 pF/cm2, about twice the ideal 
values of '/,ad, and closer to measured values. Note that 
the electroneutrality correction y'&, extremely important 
in getting a reasonable result for surface tension, is much 
less important for the electrical capacitance, given by the 
second derivative of the surface tension with potential. 
Apparently, the electroneutrality correction is relatively 
constant with electrode charge. If, using the data for d = 
0 and h0.05, we write y as a parabolic function of a, the 
second derivative, for d/u = 1, is 23 464 dyn/cm without 
y& and 22 416 dyn/cm with this correction. 

The Lippmann equation is not satisfied by our model: 
the charge densities according to (26) and (27) approach 
twice the value obtained from the stepfunction charge 
densities. The reason for the discrepancy is found on 
examination of T&, which is the largest term in y which 
varies with charge. For d much larger than lal, it becomes 

y!&! = -ae2p2a2d = -4aq2d = -v2/4ad (28) 

Note that the field energy of an ideal capacitor is74 

Goodisman and Amokrane 

E, = ' S d E  dz = 2aq2d = p / 8 x d  
8a o 

with E the electric field, which differs from ygL in that the 
latter is a free energy, involving the work necessary to 
separate charges in forming the double layer, as discussed 
in Chapter 17 of ref 70 and elsewhere.75 Differeniation 
of (28) gives 

The violation of the Lippmann equation is related to the 
lack of mechanical e q ~ i l i b r i u m . ~ ~ ~ ~ ~ ~ ~ ~  The Born-Green- 
Yvon equation, or mechanical equilibrium condition, is 

for a system in which all forces are central. I t  relates the 

(72) J. L. Cooper, J. A. Harrison, and J. Holloway in "Ionic Liquids", 

(73) J. Goodisman, J. Chim. Phys., 72, 143 (1975). 
(74) R. Becker and F. Sauter, "Electromagnetic Fields and 

(75) J. Frenkel, 'Kinetic Theory of Liquids", Oxford, London, 1946, 

D. Inman and D. G. Lovering, Ed., Plenum, New York, 1981. 

Interactions", Blaisdell, New York, 1964. 

Section VI.& 

one- and two-particle distributions and, by relating the 
corresponding contributions to the pressure, guarantees 
the constancy of the normal component of the pressure 
through the interface. When this constancy is used in 
conjunction with the formula (14) for the surface tension, 
which inv01ves~~J~ the difference between tangential ( x  
component) and normal (z component) pressure, a new 
formula is obtained. With P h  representing the (isotropic) 
pressure of the homogeneous phase, we have 

(30) 
where gb. is the bulk correlation function, depending only 
on rlz. +his gives y in terms of "surface excess" densities 
and two-particle distributions, i.e. 

The contribution of the electrostatic forces may be cal- 
culated as in eq 19-24. The term corresponding to y!& is 
not expected to contribute much. In the remaining elec- 
trostatic terms 

-ne2p2 

= y( + old)  + 
ae2p2 

1 13a4 
48 

the first term, which is the largest, is just half of y&, so 
differentiation with respect to V will give the correct q. 
Unfortunately, consideration of the contribution of the 
hard-sphere potential to surface tension shows that (30) 
would give totally unreasonable surface tensions. 

Mechanical equilibrium and consistency among these 
surface tension expressions may be restored to our model 
by using, when surface charges and potentials are dis- 
cussed, one-particle distributions PI') generated from the 
two-particle distributions pi:) of our model by eq 29. These 
pI1) are consistent with the p $ )  in the sense that (30) will 
lead to the same surface tension as (141, and the pressure 
normal to the interface will be independent of z. Since 
we have calculated y using (14), which requires only the 
pi;), the surface tensions will not be changed; if we use (30) 
to calculate the surface tension, we insert p!')  calculated 
from (29) and p$' as before. There is still an inconsistency 
in that the two-particle ion-metal distributions, for which 
there is no correlation, are constructed with stepfunctions 
rather than the true one-particle distributions. 

In order that the integration of (29) to give one-particle 
densities make sense, dpii)/dz must vanish for z - -a. 
This can be shown by invoking the short range of U H S ~  gs 
- 1, and gD. The charge density for calculation of electrical 
properties is now given by 

(76) S. Ono and S. Kondo, "Molecular Theory of Surface Tension in 
Liquids", in "Encyclopedia of Physics", Vol. 10, S. Flugge, Ed., Spring- 
er-Verlag, Berlin, 1960. 
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where dpl’)/dz is given by (29); p(-) of course vanishes. 
The charge density a t  z = 0 is 6.65170 esu/cm2. The 
calculated value of q (charge on the salt) depends on x ,  the 
value of z at  which we cut off the p?: 
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distribution in the average electric potential 

pf1) = pie-eitl/kT (34) 

where p i  is the value of the density in the bulk ( z  - -a) 
and ei the charge of the ith species. Combining (34) with 
the Poisson equation for the charge density p, with di- 
electric constant unity 

(35) 

leads to the Poisson-Boltzmann equation which may be 
solved for 1,5 and hence the p?. Since short-range forces 
are ignored in thiis model, the surface tension of eq 15 
reduces to yEL, and, since short-range correlations are also 
ignored, one can take hij = 0 in eq 19; the result may be 
written71 

y = -1/(4a) J E 2  dz (36) 

For a 1:l salt with bulk densith p / 2  for anions and 
cations and dielectric constant unity, the surface tension 
of the Gouy-Chapman model may be given expli~itly’~,~’ 
as a function of AV. Letting W = eAV/4kT and K* = 
pe2/kT, we have 

4ap = e.2 = -lp+ 

y = JOE2 dz = -2~(2kT/e)’sinh 2W (37) 

For our salt, the Debye length 1 / ~  is 0.463 193 A-1. The 
surface charge on the salt is 

Q=l, p dz = ( 4 k T ~ / e )  sinh W cosh W (38) 

To have Q = 9634.3 esu/cm2, we require W = 0.0343808, 
which corresponds to AV = 4.45903 X statvolts and 
y = -0.2147137 erg/cm2. Following our procedure of fitting 
the results for Q = 0 and *9634.3 esu/cm2 to a parabola, 
we have 

-m 

0 

= yo - 1.079889 X 108AVL 

so dy/dV = 9630.5 esu/cm2 for AV = 4.45903 X the 
deviation from 9634.3 esujcm’ being due to the fact that 
(37) is not precisely a parabola in W. The capacitance is 
2.159778 X lo8 cm-l or 239.975 pF/cm2. More precisely, 
we use (38) to get the capacitance as 

dQ/dAV = K(cosh’ W + sinh2 W) 

which at W = 0 is just K,  or 239.881 /*F/cm2. The value 
is, as previously mentioned, much too high. 

VII. Conclusion 
The initial purpose of performing these calculations was 

to ascertain whether one could describe the charged in- 
terface of a molten salt (in contact with a charged wall 
representing the metal) by invoking the same simple as- 
sumption for the ion-ion distributions that gave reasonable 
surface tensions for the neutral surface. Additional as- 
sumptions are required for the salt-metal two-particle 
distribution, and we assumed no correlation. For the 
charged interface, one is interested in the potential dif- 
ference between inside and outside the surface, and how 
it changes as the surface charge changes (electrocapillary 
curve). The capacities obtained are much too low. How- 
ever, their calculation requires surface charges and po- 
tential drops which, unlike the surface tension as given by 
the Kirkwood-Buff formula, require the one-particle dis- 
tributions p(’). Since the pI1) assumed were inconsistent 
with the p $ ,  different theoretically equivalent surface 
tension formulas could give quite different results. A 
further inconsistency exists between the surface charges 

We may choose the value of x to make q equal to the value 
implicit in our pi?), i.e. 

Jldz ( z  - x)Smdz’(z  -m - z? x 

Here, we have put f* = 1 since the electroneutrality factors 
make only a small contribution to the change of surface 
tension with potential. The notation p+ and p- is now used 
to distinguish the stepfunctions appearing in pi?) from the 
one-electron densities now being generated and used in q 
and V. In a product of two pi  (i = + or -) the first factor 
is a function of z and the second of z’. The right side of 
(33) may be reduced, after considerable algebra, to an 
expression involving the moments and contact values of 
gS and gD. Then the solution of (33) leads to x = -0.39497~. 

The potential drop across the entire interface, with 
contributions from the charge density of the metal as well 
as from the ions of the salt, may be written 

The value of the integral after insertion of (29) is 1.20318 
X lo4 esufcm. Therefore, for d = 0.5u, u, and 2a, we have 
potential drops of 3.0556 X 4.5992 X and 7.6864 
X statvolts (a = 0 . 0 5 ~ ) .  Then the coefficient for the 
parabola of y in VL (eq 27) becomes, for the three cases, 
1.4084 X lo6, 1.3247 X lo6, and 0.9775 X lo6 cm-l. The 
capacitances become 3.1298,2.9437, and 2.1725 pF/cm2, 
even lower than those previously calculated. The charge 
densities calculated from the y-V parabola are 8607, 
12 186, and 15028 esu/cm2. 

The molecular dynamics calculations of He yes and 
Clarke,20 for charged hard spheres near a wall, model 
molten KCl. Although surface tensions were not reported, 
a value for capacity was derived from surface charges and 
potential drops, as computed from the charge densities. 
The value of 50-70 pF/cm2 is of the right size, although 
it was stated that the system is far from the pzc, and that 
errors in this quantity are large. 

We may also compare our results with what one obtains 
from the Gouy-Chapman model. Apparently, the short- 
range interionic forces and correlations, which are not 
considered, lead to corrections which cancel, as seems to 
occur in the same calculations on the related Debye- 
Huckel leading to satisfaction of the Lippmann 
equation. In the Gouy-Chapman model, the one-particle 
densities are assumed to vary according to a Boltzmann 

~~ 

(77) S. N. Bagchi, Int. J. Math. Sci., 3, 607 (1980). 
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derived from the Lippmann equation and those calculated 
from the pi1). 

The first kind of inconsistency is removed by main- 
taining the @ and using the equation of mechanical 
equilibrium to derive pi1) from the p!:). Different surface 
tension formulas then give the same results, and me- 
chanical equilibrium is assured in the region where pi') and 
pi?) are nonzero. Since pi1) must be truncated to assure the 
correct surface charge, a new inconsistency appears, as no 
repulsive interaction between metal and salt particles 
(which would make pj l )  go to zero) is introduced into the 
calculations. Furthermore, if one wants to assume no 
correlation between particles of the metal m and ions of 
the salt i, the two-particle distribution pi$ should be pI1) 
X p i ) ,  with pi1) the same one-particle densities used for 
calculation of electrical properties. Inserting this into the 
mechanical equilibrium condition yields a more compli- 
cated integral equation for the pi1), solution of which has 
not been attempted here. 

The capacities calculated with pi1) derived from me- 
chanical equilibrium are still quite small compared with 
those reported experimentally for the molten salt-metal 
surface. The Lippmann equation can be satisfied only for 
one choice of the distance of closest approach of salt ions 
to the metal. To help understand the origin of the prob- 
lem, we considered the Gouy-Chapman model, which, ig- 
noring nonelectrostatic interactions and interparticle 
correlations, satisfies the mechanical equilibrium condition 
as well as the Lippmann equation. For a molten salt in 
contact with a charged wall, this model gives capacities 
which are much too high. When a region free of ions (Stern 

layer) is introduced between the region of the salt ions and 
the charged surface (metal), the potential drop across the 
interface is increased with no change in the surface charge, 
thus reducing the capacity. However, the Lippmann 
equation is no longer satisfied. As in our model, we now 
have an ionic distribution which drops to zero within the 
region of the interface, implying a repulsive force, without 
inclusion of such a force in the surface tension calculation. 
Again we conclude that a consistent treatment of such 
forces is required in order for a model to satisfy the 
Lippmann equation. 

Since this equation is easily demonstrated thermody- 
namically, a few words are appropriate about why we are 
interested in finding it in our model. The equation as 
generally stated involves the total surface charge density 
of the interface and the potential difference between ho- 
mogeneous regions on either side of the interfacial region. 
A model gives these quantities specific meaning by sup- 
plying information about the charge distributions, from 
which total density and potential drop are calculable. The 
charge distribution is also related through the mechanical 
equilibrium condition to the two-particle distribution, 
which may be used to calculate the surface tension. From 
this point of view, the satisfaction of the Lippmann 
equation is a necessary condition on the two-particle dis- 
tributions, which describe the correlation due to the in- 
terparticle forces. 
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The rate constants of reaction of 2,4-dinitrofluorobenzene (DNF) with OH- in microemulsions of n-octane, 
tert-amyl alcohol, and cetyltrimethylammonium bromide (CTABr) and in micelles of CTABr and tert-amyl 
alcohol can be treated quantitatively by using a pseudophase ion-exchange model and the second-order rate 
constants in the microemulsion or micelle droplets are larger than that in water, but much smaller than those 
in moist tertiary alcohols. Reactions of DNF and 2,4-dinitrochlorobenene (DNC) in microemulsions or micelles 
containing primary alcohols (n-butyl or benzyl alcohol) give largely ethers as products, and the ethers slowly 
react giving the 2,4-dinitrophenoxide ion. These reactions of DNF and DNC are faster than reactions with 
OH- in water but are much slower than those in the alcohols. Qualitatively, the relative apparent nucleophilicities 
of hydroxide and alkoxide ion in the micelle or microemulsion droplet are similar to those in the absence of 
surfactant. Anionic microemulsions of sodium lauryl sulfate (NaLS) inhibit reactions, but to smaller extent 
than anionic micelles in water. 

Microemulsions are transparent dispersions containing 
water, an oil, a surfactant, and a cosurfactant, which is 
usually a medium chain length alcohol.'S2 The formation 
of microemulsions in the absence of surfactant has been 
reported3 (cf. ref 2). Reactions can be carried out in these 
media, and they probably take place in the microemulsion 
 droplet^;^,^ and in some systems the cosurfactant may be 

(1) Prince, L. M., Ed. "Microemulsions: Theory and Practice"; Aca- 
demic Press: New York, 1977. 

(2) Danielsson, I.; Lindman, B. Colloids Surf. 1981, 3, 391. 
(3) Borys, N. F.; Holt, S. L.; Barden, R. E. J. Colloid Interface Sci. 

1979, 71, 526. Gonzalez, A,; Holt, S. L. J. Org. Chem. 1981, 46, 2594. 

the active reagent.44 This behavior has been observed 
in dephosphorylation a t  high pH, where the nucleophile 
is alkoxide ion from the alcohol or an ethylene oxide de- 
rived ~urfactant.~f 

The reaction of 2,4-dinitrochlorobenzene (DNC) with 
n-hexylamine occurs readily in microemulsions with an 

(4) (a) Mackay, R. A.; Letts, K.; Jones, C. in 'Micellization, Solubili- 
zation and Microemulsions"; Mittal, K. L., Ed.; Plenum Press: New York, 
1977; Vol. 2, p 801. (b) Hermansky, C.; Mackay, R. A. In "Solution 
Chemistry of Surfactants"; Mittal, K. L., Ed.; Plenum Press: New York, 
1979; Vol. 2, p 723. 

(5) Bunton, C. A.; de Buzzaccarini, F. J .  Phys. Chem. 1981,85, 3142. 
(6) Mackay, R. A.; Hermansky, C. J .  Phys. Chem. 1981,85, 739. 
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