103 research outputs found

    Contact zone analysis based on multidexel workpiece model and detailed tool geometry representation

    Get PDF
    A new method for analyzing the tool-workpiece-contact area in cutting processes is presented. To gain enhanced knowledge about tool-workpiece interaction, determination of chip thickness, contact length and resulting cross-section area of the undeformed chip is of major interest. Compared to common simulation approaches, where rotation-symmetrically constructed tool geometry is used, the new method uses a detailed three dimensional tool shape model for an extended and more accurate contact zone analysis. As a corresponding representation of the workpiece and its time dependent shape-changes a multidexel model is used. To prepare the geometric tool model, the contained BREP topology is built up within the simulation system using data from a STEP-file. First of all functional parts of the tool like rake and flank faces and cutting edges are labeled for further processing. In a second step the identified NURBS-faces are discretized for the application in material-removal calculation. This way a mesh is built-up based on triangle elements which maps the geometry of each cutting edge into a 2D parametric representation. In relation to rake face, each node is described by its position on the cutting edge and its perpendicular distance to this edge. To perform contact zone analysis each cutting geometry and a multidexel model are intersected in discrete time steps corresponding to a tool rotation of about three degrees. The intersection point of each dexel and the cutting geometry is calculated. Parametric cutting geometry allows for a direct computation of local cutting depth and contact length for each involved point. Based on the local values of contact length and cross section area of the undeformed chip the characteristic values for the entire contact zone are calculated and used to predict mechanical as well as thermal loads caused by the cutting process. To demonstrate the application of the novel approach, prediction of forces in slot milling of 1.1191 steel is presented.DFG/PP/148

    The Pathway to Detangle a Scrambled Gene

    Get PDF
    Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20-30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development.To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways.This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules

    Genome amplification and gene expression in the ciliate macronucleus

    Full text link
    The focus of this review is on the micronucleus and macronucleus in the ciliated protozoa and the organization and function of the DNA molecules within them. We present (1) some of the structural and functional differences which are known, (2) the genetic evidence for macronuclear units, (3) two hypotheses for the organization of the DNA molecules in the macronucleus to explain these units, and (4) experiments designed to discriminate between these hypotheses. We conclude that the size of the genome is not reduced in the macronucleus and that there are 45 copies of the haploid genome present in the macronucleus of normal strains of Tetrahymena pyriformis and 800 copies in the macronucleus of Paramecium aurelia . The ciliate genome is relatively simple in terms of repeated sequences. However, not all copies of the genes present in the macronucleus may be identical since fractions of differing thermal stability appear after renaturation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44178/1/10528_2004_Article_BF00486122.pd

    Micronuclear DNA synthesis inStylonychia mytilus

    No full text
    • …
    corecore