51 research outputs found

    Fumaric acid production from sugarcane trash hydrolysate using Rhizopus oryzae NIIST1

    Get PDF
    548-556Production of organic acids through fermentation of biomass feedstock is a potent strategy for co-product generation and improving economics in lignocellulose biorefinery. Sugar cane trash (SCT), a surplus available agro-residue, was exploited for the production of fumaric acid - a dicarboxylic acid with applications in the synthesis of polyester resins, as mordant and as a food additive. The isolate NIIST1 which showed the production of fumaric acid was identified as Rhizopus oryzae. Media engineering was carried out and a maximum production of fumaric acid in SCT hydrolysate incorporated media was 5.2 g/L. Response surface analyses of the interaction of parameters indicated the importance of maintaining a high C/N ratio. Results indicate the scope for developing the Rhizopus oryzae strain NIIST1 as a potent organism for fumaric acid production, since only a few microorganisms have the ability to produce industrially relevant compounds using lignocellulose biomass hydrolysates

    Fumaric acid production from sugarcane trash hydrolysate using Rhizopus oryzae NIIST 1

    Get PDF
    Production of organic acids through fermentation of biomass feedstock is a potent strategy for co-product generation and improving economics in lignocellulose biorefinery. Sugar cane trash (SCT), a surplus available agro-residue, was exploited for the production of fumaric acid - a dicarboxylic acid with applications in the synthesis of polyester resins, as mordant and as a food additive. The isolate NIIST 1 which showed the production of fumaric acid was identified as Rhizopus oryzae. Media engineering was carried out and a maximum production of fumaric acid in SCT hydrolysate incorporated media was 5.2 g/L. Response surface analyses of the interaction of parameters indicated the importance of maintaining a high C/N ratio. Results indicate the scope for developing the Rhizopus oryzae strain NIIST 1 as a potent organism for fumaric acid production, since only a few microorganisms have the ability to produce industrially relevant compounds using lignocellulose biomass hydrolysates

    Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis

    Get PDF
    Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl-umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host-pathogen interactions and may represent novel therapeutic adjuncts
    corecore