43 research outputs found

    Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA

    Get PDF
    CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments

    Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria

    Get PDF
    Antibiotic-resistant bacterial infections have become global issues for public health, which increases the utter need to develop alternatives to antibiotics. Here, the HSER (Homo sapiens retinoic acid receptor) peptide was designed from retinoic acid receptor responder protein 2 of Homo sapiens, and was conjugated with synthesized CQDs (carbon quantum dots) for enhanced antibacterial activity in combination, as individually they are not highly effective. The HSER-CQDs were characterized using spectrophotometer, HPLC coupled with electrospray-ionization quadrupole time-of-flight mass spectrometer (ESI-qTOF) mass spectrometer, zeta potential, zeta size, and FTIR. Thereafter, the antibacterial activity against Vancomycin-Resistant Staphylococcus aureus (VRSA) and Escherichia coli (carbapenem resistant) was studied using growth curve analysis, further supported by microscopic images showing the presence of cell debris and dead bacterial cells. The antibacterial mechanism of HSER-CQDs was observed to be via cell wall disruption and also interaction with gDNA (genomic DNA). Finally, toxicity test against normal human epithelial cells showed no toxicity, confirmed by microscopic analysis. Thus, the HSER-CQDs conjugate, having high stability and low toxicity with prominent antibacterial activity, can be used as a potential antibacterial agent.O

    Antimicrobial activity of CdTe QDs modified with lanthanides on pseudomonas aeruginosa

    Get PDF
    The aim of this study is to obtain data based on an experimental procedure and check the effectiveness of some antibacterial agents against pathogenic bacteria. In the present experiment, two different nanoparticles (Cadmium Telluride Quantum dots with Lanthanides: Gadolinium and Terbium) were used to check their antibacterial properties on Pseudomonas aeruginosa. The Cadmium Telluride Quantum dots without the Lanthanides, Gadolinium nitrate and Terbium nitrate were also tested on those bacteria as control. In the present experiment, the following methods were employed: disc-diffusion test, the determination of the growth properties of the bacteria and comparison of absorbance after treatment with antimicrobial agent. From the results it has been found that the tested Cadmium Telluride Quantum dots with Lanthanides (Gadolinium and Terbium) have good antimicrobial effects. Additionally, GdQDs show stronger antibacterial effect than Tb QD and other tested compounds

    Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes

    Get PDF
    Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II) complexes have been prepared ((Him)[Cu(im)4(H2O)2](btc) 3H2O, where im = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid, [Cu3(pmdien)3(btc)](ClO4)3 6H2O) and [Cu3(mdpta)3(btc)](ClO4)3 4H2O, where pmdien = N,N,N0,N0 0, N0 0-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropyl)methyl-amine), and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains

    Characterization and in vitro analysis of probiotic-derived peptides against multi drug resistance bacterial infections

    Get PDF
    An inexorable switch from antibiotics has become a major desideratum to overcome antibiotic resistance. Bacteriocin fromLactobacillus casei, a cardinal probiotic was used to design novel antibacterial peptides named as Probiotic Bacteriocin Derived and Modified (PBDM) peptides (PBDM1: YKWFAHLIKGLC and PBDM2: YKWFRHLIKKLC). The loop-shaped 3D structure of peptides was characterizedin silicovia molecular dynamics simulation as well as biophysically via spectroscopic methods. Thereafter,in vitroresults against multidrug resistant bacterial strains and hospital samples demonstrated the strong antimicrobial activity of PBDM peptides. Further,in vivostudies with PBDM peptides showed downright recovery of balb/c mice from Vancomycin ResistantStaphylococcus aureus(VRSA) infection to its healthy condition. Thereafter,in vitrostudy with human epithelial cells showed no significant cytotoxic effects with high biocompatibility and good hemocompatibility. In conclusion, PBDM peptides displayed significant antibacterial activity against certain drug resistant bacteria which cause infections in human beings. Future analysis are required to unveil its mechanism of action in order to execute it as an alternative to antibiotics

    CdSe QD biosynthesis in yeast using tryptone-enriched media and their conjugation with a peptide hecate for bacterial detection and killing

    Get PDF
    The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel "green" route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 degrees C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance
    corecore