7 research outputs found

    Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia.

    Get PDF
    International audienceOBJECTIVES: This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE).RESULTS: Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain.DISCUSSION: Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria

    Molecular characterisation of antimicrobial resistance and virulence genes in Escherichia coli strains isolated from diarrhoeic and healthy rabbits in Tunisia

    Full text link
    [EN] The purpose of this study was to identify Escherichia coli isolates in diarrhoeic and healthy rabbits in Tunisia and characterise their virulence and antibiotic resistance genes. In the 2014-2015 period, 60 faecal samples from diarrhoeic and healthy rabbits were collected from different breeding farms in Tunisia. Susceptibility to 14 antimicrobial agents was tested by disc diffusion method and the mechanisms of gene resistance were evaluated using polymerase chain reaction and sequencing methods. Forty E. coli isolates were recovered in selective media. High frequency of resistance to tetracycline (95%) was detected, followed by different levels of resistance to sulphonamide (72.5%), streptomycin (62.5%), trimethoprim-sulfamethoxazole (60%), nalidixic acid (32.5%), ampicillin (37.5%) and ticarcillin (35%). E. coli strains were susceptible to cefotaxime, ceftazidime and imipenem. Different variants of blaTEM, tet, sul genes were detected in most of the strains resistant to ampicillin, tetracycline and sulphonamide, respectively. The presence of class 1 integron was studied in 29 sulphonamide-resistant E. coli strains from which 15 harboured class 1 integron with four different arrangements of gene cassettes, dfrA17+aadA5 (n=9), dfrA1 + aadA1 (n=4), dfrA12 + addA2 (n=1), dfrA12+orf+addA2 (n=1). The qnrB gene was detected in six strains out of 13 quinolone-resistant E. coli strains. Seventeen E. coli isolates from diarrhoeic rabbits harboured the enteropathogenic eae genes associated with different virulence genes tested (fimA, cnf1, aer), and affiliated to B2 (n=8) and D (n=9) phylogroups. Isolated E. coli strains from healthy rabbit were harbouring fim A and/or cnf1 genes and affiliated to A and B1 phylogroups. This study showed that E. coli strains from the intestinal tract of rabbits are resistant to the widely prescribed antibiotics in medicine. Therefore, they constitute a reservoir of antimicrobial-resistant genes, which may play a significant role in the spread of antimicrobial resistance. In addition, the eae virulence gene seemed to be implicated in diarrhoea in breeder rabbits in Tunisia.The work was supported by Tunisian Ministry of Higher Education, Scientific Research and Technology (LR16IP03). Many thanks go to the members of the Department of Animal Production, National Institute of Agronomy of Tunisia for their help in collecting the samples.Ben Rhouma, R.; Jouini, A.; Klibi, A.; Hamrouni, S.; Boubaker, A.; Kmiha, S.; Maaroufi, A. (2020). Molecular characterisation of antimicrobial resistance and virulence genes in Escherichia coli strains isolated from diarrhoeic and healthy rabbits in Tunisia. World Rabbit Science. 28(2):81-91. https://doi.org/10.4995/wrs.2020.10879OJS8191282Allen H.K., Donato J., Wang H.H, Cloud-Hansen K.A., Davies J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol., 8: 251-259. https://doi.org/10.1038/nrmicro2312Allocatti N., Masulli M., Alexeyev M.F., Di Ilio C. 2013. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health., 10: 6235-6254. https://doi.org/10.3390/ijerph10126235Alonso C.A., Zarazaga M., Ben Sallem R., Jouini A., Ben Slama K., Torres C. 2017. Antibiotic resistance in Escherichia coli in Husbandry animals. The African perspective. Lett. Appl. Microbiol., 64: 318-334. https://doi.org/10.1111/lam.12724Barbosa T.M., Levy S.B. 2000. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updates, 5: 303-311. https://doi.org/10.1054/drup.2000.0167Ben Said L., Jouini A., Klibi N., Dziri R., Alonso C.A., Boudabous A., Ben Slama K., Torres C. 2015. Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of farm environment in Tunisia. Int. J. Food Microbiol., 203: 86-92. https://doi.org/10.1016/j.ijfoodmicro.2015.02.023Ben Sallem R.B., Gharsa H., Slama K.B.., Rojo-Bezares B, Estepa V., Porres-Osante N., Jouini A., Klibi N., SĂĄenz Y., Boudabous A., Torres C. 2013. First detection of CTX-M-, CMY-2, and QnrB19 resistance mechanisms in fecal Escherichia coli isolates from healthy pets in Tunisia. Vector Borne Zoonotic Dis., 13: 98-102. https://doi.org/10.1089/vbz.2012.1047Ben Slama K., Jouini A., Ben Sallem R., Somalo S., SĂĄenz Y., Estepa V., Boudabous A., Torres C. 2010. Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia and characterization of integrons and antimicrobial resistance mechanisms implicated. Int. J. Food Microbiol., 13: 281-286. https://doi.org/10.1016/j.ijfoodmicro.2009.12.003Ben Slama K., Ben Sallem R., Jouini A., Rachid S., Moussa L., Saenz Y., Estepa V., Somalo S., Boudabous A., Torres C. 2011. Diversity of genetic lineages among CTX-M-15 and CTX-M-14 producing Escherichia coli strains in a Tunisian hospital. Curr. Microbiol., 62: 1794-1801. https://doi.org/10.1007/s00284-011-9930-4Blanco J.E., Blanco M., Blanco J., Mora A., Balaguer L., Mourino M., JuÁrez A., Jansen W.H. 1996. O serogroups, biotypes, and eae genes in Escherichia coli strains isolated from diarrheic and healthy rabbits. J. Clin. Microbiol., 34: 3101- 3107. https://doi.org/10.1128/JCM.34.12.3101-3107.1996Blanco M., Blanco J.E., Dahbi G., Alonso M.P., Mora A., Corira M.A.A., Madrid C., JuĂĄrez A., BernĂĄrdez M.I., GonzĂĄlez E.A., Blanco J. 2006. Identification of two new intimin types in atypical enteropathogenic Escherichia coli. Int. Microbiol., 9: 103-110.Brinas L., Zarazaga M., Saenz Y., Ruiz-Larrea F., Torres C. 2002. Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob. Agents Chemother., 46: 3156-3163. https://doi.org/10.1128/AAC.46.10.3156-3163.2002Bryan A., Shapir N., Sadowsky M.J. 2004. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl. Environ. Microbiol., 70: 2503-2507. https://doi.org/10.1128/AEM.70.4.2503-2507.2004Camarda A., Pennelli D., Battista P., Martella V., Greco L., Alloggio I., Mazzolini E. 2004. Virulence genes and antimicrobial resistance patterns of enteropathogenic Escherichia coli from rabbits in southern Italy. In Proc.: 8th World Rabbit Congress., September 7-10, 2004, Puebla, Mexico, 470-476.Clermont O., Bonacorsi S., Bingen E., 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microb., 66: 4555-4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000Clermont O., Lavolly M., Vimont S., Deschamps C., Forestier C., Branger C., Denamur E., Arlet G. 2008. The CTX-M15-producing Escherichia coli diffusing clone belongs to a highly virulent B2 phylogenic subgroup. J. Antimicrob. Chemother., 61: 1024-1028. https://doi.org/10.1093/jac/dkn084Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial susceptibility testing. Twenty-fifth informational supplement. Clinical and Laboratory Standards Institute document M100-S25, CLSI, Wayne, PA.Coque T.M., Novais A., Carattoli A., Poirel L., Pitout J., Peixe L., Baquero F., CantĂłn R., Nordmann P. 2008. Dissemination of clonally related Escherichia coli strains expressing extendedspectrum ÎČ-lactamase CTX-M-15. Emerg. Infect. Dis., 14: 195-200. https://doi.org/10.3201/eid1402.070350Da Costa P.M., Loureiro L., Matos A.J.F. 2013. Transfer of Multidrug-Resistant Bacteria between intermingled ecological niches: the interface between Humans, Animals and the environment. Int. J. Environ. Res. Public Health., 10: 278-294. https://doi.org/10.3390/ijerph10010278Dotto G., Giacomelli M., Grilli G., Ferrazzi V., Carattoli A., Fortini D., Piccirillo A. 2014. High prevalence of oqxAB in Escherichia coli isolates from domestic and wild lagomorphs in Italy. Microb. Drug Resist., 20: 118-123. https://doi.org/10.1089/mdr.2013.0141Eager H., Swan G., van Vuuren M. 2015. A survey of antimicrobial usage in animals in South Africa 479 with specific reference to food animals. J. S. Afr. Vet. Assoc., 83: 16. https://doi.org/10.4102/jsava.v83i1.16Guardabassi L., Schwarz S., Lloyd D.H., 2004. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother., 54: 321-332. https://doi.org/10.1093/jac/dkh332Hai S.W., Qi R.P., Y. Gao M. et al. 2014. Study on molecular characterization of Class I integron and integron-associated antimicrobial resistance in Escherichia coli from beef cattle. China Animal Husbandry Veterinary Medicine., 41: 63-67.Jacoby G.A., Griffin C., Hooper D.C. 2011. Citrobacter spp. as a source of qnrB alleles. Antimicrob. Agents Chemother., 55: 4979-4984. https://doi.org/10.1128/AAC.05187-11Johnson T.J., Logue C.M., Johnson J.R., Kuskowski M.A., Sherwood J.S., Barnes H.J., DebRoy C., Wannemuehler Y.M., Obata-Yasuoka M., Spanjaard L., Nolan L.K. 2012. Associations between multidrug resistance, plasmid content, and virulence potential among extra-intestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis., 9: 37-46. https://doi.org/10.1089/fpd.2011.0961Jouini A., Ben Slama K., Saenz Y., Klibi N., Costa D., VinuĂ© L., Zarazaga M., Boudabous A., Torres C. 2009. Detection of Multiple-Antimicrobial Resistance and Characterization of the Implicated Genes in Escherichia coli isolates from Foods of Animal Origin in Tunis. J. Food Protect., 72: 1082-1088. https://doi.org/10.4315/0362-028X-72.5.1082Kaper J.B., Nataro J.P., Mobley H.L. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2: 123-140. https://doi.org/10.1038/nrmicro818LaukovĂĄ A., StrompfovĂĄ V., SzabĂłovĂĄ R., BĂłnai A., Matics Z., KovĂĄcs M., PogĂĄny SimonovĂĄ M. 2019. Enterococci from pannon white rabbits: detection, identification, biofilm and screening for virulence factors. World Rabbit Sci., 27: 31-39. https://doi.org/10.4995/wrs.2019.10875Marinho C., Igrejas G., Gonçalves A., Silva N., Santos T., Monteiro R., Gonçalves D., Rodrigues T., Poeta P. 2014. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Anaerobe, 30: 116-119. https://doi.org/10.1016/j.anaerobe.2014.09.009Panteado A.S., Ugrinivich L.A., Blanco J., Blanco M., Andrade J.R.C., Correa S.S., De Castro A.F.P. 2002. Serobiotypes and virulence genes of Escherichia coli strains isolated from diarrheic and healthy rabbits in Brazil. Vet. Microb., 89: 41-51. https://doi.org/10.1016/S0378-1135(02)00148-7Pohl P.H., Peeters J.E.E., Jacquemin R., Lintermans P.F., Mainil J.G. 1993. Identification of eae sequences in enteropathogenic Escherichia coli strains from rabbits. Infect. Immun., 61: 2203-2206. https://doi.org/10.1128/IAI.61.5.2203-2206.1993Poirel L., Bonnin R.A., Nordmann P. 2012. Genetic support and diversity of acquired extended-spectrum beta-lactamases in Gram-negative rods. Infect. Genet. Evol., 12: 883-893. https://doi.org/10.1016/j.meegid.2012.02.008Qing F.K., Yi G., Ze H.Y., YA J.L., Wei H.M., Zhao B.D., Yu W.Z., Guan W. 2006. Detection of quinolone resistance and plasmid mediated quinolone gene in Escherichia coli isolated from rabbit. Chin. J. Prev. Vet. Med., 38: 944-948.Ruiz J., Simon K., Horcajada J.P., Velasco M., Barranco M., Roig G., Moreno-MartĂ­nez A., MartĂ­nez J.A., JimĂ©nez de Anta T., Mensa J., Vila J. 2002. Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men. J. Clin. Microbiol., 40: 4445-4449. https://doi.org/10.1128/JCM.40.12.4445-4449.2002SĂĄenz Y., Zarazaga M., Briñas L., Lantero M., Ruiz-Larrea F., Torres C. 2001. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int. J. Antimicrob. Agents.,18: 353-358. https://doi.org/10.1016/S0924-8579(01)00422-8Saenz Y., Briñas L., DomĂ­nguez E., Ruiz J., Zarazaga M., Vila J., Torres C. 2004. Mechanisms of resistance in multiple-antibio resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother., 48: 3996-4001. https://doi.org/10.1128/AAC.48.10.3996-4001.2004Santos T., Silva N., Igrejas G, Rodrigues P., Micael J., Rodrigues T., Resendes R., Gonçalves A., Marinho C., Gonçalves D., Cunha R., Poeta P. 2013. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipielago. Anaerobe., 24: 25-31. https://doi.org/10.1016/j.anaerobe.2013.09.004Silva N., Igrejas G., Figueiredo N., Gonçalves, A., Radhouani H., Rodrigues J., Poeta P. 2010. Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). Sci Total Environ., 408: 4871-4876. https://doi.org/10.1016/j.scitotenv.2010.06.046Swennes A.G., Buckley E.M., Parry N.M.A., Madden C.M., Garcia A., Morgan P.B., Astrofsky K.M., Fox J.G. 2012. Enzootic Enteropathogenic Escherichia coli Infection in Laboratory Rabbits. J. Clin. Microbiol., 50: 2353-2358. https://doi.org/10.1128/JCM.00832-12Teshager T., Herrero I.A., Porrero M.C., Garde J., Moreno M.A., DomĂ­nguez L. 2000. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses. Int. J. Antimicrob. Agents, 15: 137-142. https://doi.org/10.1016/S0924-8579(00)00153-9Van den Bogaard A.E., London N., Stobberingh E.E. 2000. Antimicrobial resistance in pig faecal samples from The Netherlands (five abattoirs) and Sweden. J. Antimicrobial Chemother., 45: 663-671. https://doi.org/10.1093/jac/45.5.663Wang J., Sang L., Chen Y., Sun S., Chen D., Xie X. 2019. Characterisation of Staphylococcus aureus strain causing severe respiratory disease in rabbits. World Rabbit Sci., 27: 41-48. https://doi.org/10.4995/wrs.2019.10454Werner G., Gfrörer S., Fleige C., Witte W., Klare I. 2008. Tigecycline-resistant Enterococcus faecalis strain isolated from a German ICU patient. J. Antimicrob Chemother., 61: 1182-1183. https://doi.org/10.1093/jac/dkn065Yoon S.H., Jeong H., Kwon S.K., Kim J.F. 2009. Genomics, Biological Features, and Biotechnological Applications of Escherichia coli B: Is B for better. In: Lee S.Y. (eds). Systems Biology and Biotechnology of Escherichia coli., 1-17. https://doi.org/10.1007/978-1-4020-9394-4_1Zhao X., Yang J., Ju Z., Chang W., Sun S. 2018. Molecular characterization of antimicrobial resistance in Escherichia coli from rabbit farms in Tai'an, China. Hindawi, Biomed Research International., 2018: 1-7. https://doi.org/10.1155/2018/860764

    Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia

    No full text
    Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health

    Molecular Characterization and Clonal Diversity of Methicillin-Resistant and -Susceptible Staphylococcus aureus Isolates of Milk of Cows with Clinical Mastitis in Tunisia

    No full text
    The aim of this study was to determine the genetic lineages, and the frequency of antibiotic resistance and virulence determinants in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolates recovered from milk of cows with clinical mastitis. Three hundred milk samples from bovine with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Fifteen of the 300 tested samples contained S. aureus (5%), in three cases were MRSA. Isolates (one/sample) were typed (S. aureus protein A [spa], multilocus sequence typing and accessory gene regulator [agr]). The presence of resistance and virulence genes was analyzed by PCR. The three MRSA isolates contained mecA and blaZ genes (one of them also the msr(A) gene), and carried the enterotoxin gene sen; they were typed as t10381-ST4114 or t267-ST4120, and corresponded to agr type-I. Twelve MSSA isolates were recovered and harbored the blaZ (7 strains) or erm(C) genes (1 strain). The MSSA isolates presented seven different spa-types, associated to new sequence types (STs): t426-ST4118, t267-ST4120, t1773-ST4115, t509-ST4119, t529-ST4117, t2844-ST4113, and t2802-ST4112; most isolates (8/12) were typed as t267/ST4120. All S. aureus isolates were scn-negative, except one MSSA of lineage ST4119 that exhibited the immune evasion cluster type D, and harbored the seg, sei, sem, seo, and seu enterotoxin genes. Four MSSA isolates carried the toxic shock syndrome toxin 1 gene (tst). S. aureus (including MRSA) is an important cause of bovine mastitis, showing isolates with high genetic diversity and high content in virulence genes

    First Detection of Human ST131-CTX-M-15-O25-B2 Clone and High-Risk Clonal Lineages of ESBL/pAmpC-Producing E. coli Isolates from Diarrheic Poultry in Tunisia

    No full text
    International audienceCirculation of a multi-resistance clone of bacteria associated with genetic elements in diseased animals constitutes a global public health problem. Our study focused on the characterization of the support of ESBL in cefotaxime resistant E. coli (CTXR) isolates recovered from poultry with diarrhea, analysis of their clonal lineage, and virulence-associated genes. The study was carried out on 130 samples of chickens with diarrhea, collected in 2015 from poultry farms in Tunisia. Isolates of 20 CTXR E. coli strains were identified as ESBL and AmpC ÎČ- lactamase producers. The following ÎČ-lactamase genes (number of isolates) were detected: blaCTX-M-15+ blaOXA1 (4), blaCTX-M-15 + blaOXA1 + blaTEM-1b (2), blaCTX-M-1 + blaTEM-1b (9), blaCTX-M-1 (2), blaCMY2 + blaTEM-1b (3). Six E. coli harboring blaCTXM-15 were allocated to ST131-B2-O25b-; six and three blaCTX-M-1 were grouped in ST155, ST10, and ST58, respectively, related to the phylogroup D and A. The qnrB gene, the variant aac(6â€Č)-Ib-cr, and the class 1 integrons with different gene cassettes, were detected amongst our 20 isolated strains, which were classified as ExPEC and aEPEC. Our findings highlighted the emergence of the human pandemic ST131-CTX-M-15-O25-B2 clone and the high risk of such clonal lineage strains in diarrheic poultry, in Tunisia, which could constitute a risk of their transfer to healthy animals and humans
    corecore