7 research outputs found

    Necessity of a Multifaceted Approach in Analyzing Growth of Impervious Surfaces

    No full text
    While substantial efforts have been devoted to the remote sensing of impervious surfaces, few studies have developed frameworks to connect impervious surfaces’ growth with spatial planning decisions. To this end, this paper develops a multifaceted approach with three components: Visualization, numerical analysis, and simulation at the sub-pixel level. First, the growth of impervious surfaces was visualized through write function memory (WFM) insertion for the period of 1974–2009 of Cixi County in Zhejiang Province, China. Second, anomaly detection, statistical analysis, and landscape metrics were used to quantify changes in impervious surfaces over time. Finally, a slope, land use, exclusion, urban extent, transportation, and hill shade (SLEUTH) cellular automata model was employed to simulate the impervious surface growth until 2015 under four specific spatial decision scenarios: Current trends, environmental protection growth, business growth, and Chinese policy for protecting rural regions. The results show that Cixi County experienced compact growth due to expansion and internal intensification. Interestingly, the SLEUTH reveals that the projected space of impervious surfaces’ growth was consistent with reality in 2015. The framework established in this study holds considerable potential for improving our understanding of the interaction between impervious surfaces’ growth and planning aspects

    Delimiting Urban Growth Boundary through Combining Land Suitability Evaluation and Cellular Automata

    No full text
    China’s domestic urban planning only worked on researches of urban space control, the scope definition of urban development is not clear enough. The purpose of this study is to present a new urban growth boundary (UGB) delimitation method which combined land suitability evaluation (LSE) and cellular automata (CA). This method gave credence to LSE’s advantage in sustainable land use, and CA’s advantage in objective dynamic simulation. The ecological limitation areas were defined by LSE, which were regarded as the restricted areas of urban growth; meanwhile, it was taken as an important model input to guide intensive land allocation in urban growth model (CA model). The future urban growth scenarios were predicted by CA model and the corresponding UGB lines were delineated by ArcGIS 10.1. The results indicated that this method had good performance in Ningbo’s urban growth simulation. When compared to the planned UGB in urban master planning, the simulated UGBs under port development and regulated scenarios showed more intensive and suitable spatial layout of land. Besides, the simulated UGB under regulated scenario had the most reasonable space structure and the largest ecological protection effect among the UGBs. Hence, the simulated UGBs were superior to the planned UGB. The study recommends that this UGB delimitation method can promote sustainability of land development and ecological environment in Chinese cities

    Spatiotemporal Variability of Soil Nitrogen in Relation to Environmental Factors in a Low Hilly Region of Southeastern China

    No full text
    Soil total nitrogen (TN) plays a major role in agriculture, geochemical cycles and terrestrial ecosystem functions. Knowledge regarding the TN distribution is crucial for the sustainable use of soil resources. This paper therefore aims to characterize the spatiotemporal distribution of soil TN and improve the current understanding of how various factors influence changes in TN. Natural characteristics and remote sensing (RS) variables were used in conjunction with the random forest (RF) model to map the TN distribution in a low hilly region of southeastern China in 1979, 2004 and 2014. The means and changes of TN in different geographic regions and farmland protection regions were also analyzed. The results showed that: (1) the TN showed an increasing trend in the early periods and exhibited a decreasing trend from 2004 to 2014; (2) the geographic and RS variables played more important roles in predicting TN distribution than did the other variables; and (3) changes in the fertilization and crop planting structure caused by soil testing and formulated fertilization techniques (STFFT—Soil Testing and Formulated Fertilization Techniques) as well as farmland protection policies influenced the spatiotemporal variability of TN. Evidently, more attention should be focused on improving the quality and soil fertility in the surrounding low mountainous areas

    Assessing the Impacts of Chinese Sustainable Ground Transportation on the Dynamics of Urban Growth: A Case Study of the Hangzhou Bay Bridge

    No full text
    Although China has promoted the construction of Chinese Sustainable Ground Transportation (CSGT) to guide sustainable development, it may create substantial challenges, such as rapid urban growth and land limitations. This research assessed the effects of the Hangzhou Bay Bridge on impervious surface growth in Cixi County, Ningbo, Zhejiang Province, China. Changes in impervious surfaces were mapped based on Landsat images from 1995, 2002, and 2009 using a combination of multiple endmember spectral mixture analysis (MESMA) and landscape metrics. The results indicated that the area and density of impervious surfaces increased significantly during construction of the Hangzhou Bay Bridge (2002–2009). Additionally, the bridge and connected road networks promoted urban development along major roads, resulting in compact growth patterns of impervious surfaces in urbanized regions. Moreover, the Hangzhou Bay Bridge promoted the expansion and densification of impervious surfaces in Hangzhou Bay District, which surrounds the bridge. The bridge also accelerated socioeconomic growth in the area, promoting rapid urban growth in Cixi County between 2002 and 2009. Overall, the Hangzhou Bay Bridge is an important driver of urban growth in Cixi County, and policy suggestions for sustainable urban growth should be adopted in the future

    Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA

    No full text
    Survey data describing land cover information such as type and diversity over several decades are scarce. Therefore, our capacity to reconstruct historical land cover using field data and archived remotely sensed data over large areas and long periods of time is somewhat limited. This study explores the relationship between CORONA texture—a surrogate for actual land cover type and complexity—with spectral vegetation indices and texture variables derived from Landsat MSS under the Spectral Variation Hypothesis (SVH) such as to reconstruct historical continuous land cover type and complexity. Image texture of CORONA was calculated using a mean occurrence measure while image textures of Landsat MSS were calculated by occurrence and co-occurrence measures. The relationship between these variables was evaluated using correlation and regression techniques. The reconstruction procedure was undertaken through regression kriging. The results showed that, as expected, texture based on the visible bands and corresponding indices indicated larger correlation with CORONA texture, a surrogate of land cover (correlation >0.65). In terms of prediction, the combination of the first-order mean of band green, second-order measure of tasseled cap brightness, second-order mean of Normalized Visible Index (NVI) and second-order entropy of NIR yielded the best model with respect to Akaike’s Information Criterion (AIC), r-square, and variance inflation factors (VIF). The regression model was then used in regression kriging to map historical continuous land cover. The resultant maps indicated the type and degree of complexity in land cover. Moreover, the proposed methodology minimized the impacts of topographic shadow in the region. The performance of this approach was compared with two conventional classification methods: hard classifiers and continuous classifiers. In contrast to conventional techniques, the technique could clearly quantify land cover complexity and type. Future applications of CORONA datasets such as this one could include: improved quality of CORONA imagery, studies of the CORONA texture measures for extracting ecological parameters (e.g., species distributions), change detection and super resolution mapping using CORONA and Landsat MSS
    corecore