14 research outputs found

    Optical Polarization-Based Measurement Methods for Characterization of Self-Assembled Peptides’ and Amino Acids’ Micro- and Nanostructures

    No full text
    In recent years, self-assembled peptides’ and amino acids’ (SAPA) micro- and nanostructures have gained much research interest. Here, description of how SAPA architectures can be characterized using polarization-based optical measurement methods is provided. The measurement methods discussed include: polarized Raman spectroscopy, polarized imaging microscopy, birefringence imaging, and fluorescence polarization. An example of linear polarized waveguiding in an amino acid Histidine microstructure is discussed. The implementation of a polarization-based measurement method for monitoring peptide self-assembly processes and for deriving molecular orientation of peptides is also described

    Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence

    No full text
    A reconstructive phase transition has been found and studied in ultrashort di- and tripeptide nanostructures, self-assembled from biomolecules of different compositions and origin such as aromatic, aliphatic, linear, and cyclic (linear FF-diphenylalanine, linear LL-dileucine, FFF-triphenylalanine, and cyclic FF-diphenylalanine). The native linear aromatic FF, FFF and aliphatic LL peptide nanoensembles of various shapes (nanotubes and nanospheres) have asymmetric elementary structure and demonstrate nonlinear optical and piezoelectric effects. At elevated temperature, 140–180 °C, these native supramolecular structures (except for native Cyc-FF nanofibers) undergo an irreversible thermally induced transformation via reassembling into a completely new thermodynamically stable phase having nanowire morphology similar to those of amyloid fibrils. This reconstruction process is followed by deep and similar modification at all levels: macroscopic (morphology), molecular, peptide secondary, and electronic structures. However, original Cyc-FF nanofibers preserve their native physical properties. The self-fabricated supramolecular fibrillar ensembles exhibit the FTIR and CD signatures of new antiparallel β-sheet secondary folding with intermolecular hydrogen bonds and centrosymmetric structure. In this phase, the β-sheet nanofibers, irrespective of their native biomolecular origin, do not reveal nonlinear optical and piezoelectric effects, but do exhibit similar profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL), which is not observed in the original peptides and their native nanostructures. The observed visible PL effect, ascribed to hydrogen bonds of thermally induced β-sheet secondary structures, has the same physical origin as that of the fluorescence found recently in amyloid fibrils and can be considered to be an optical signature of β-sheet structures in both biological and bioinspired materials. Such PL centers represent a new class of self-assembled dyes and can be used as intrinsic optical labels in biomedical microscopy as well as for a new generation of novel optoelectronic nanomaterials for emerging nanophotonic applications, such as biolasers, biocompatible markers, and integrated optics
    corecore