7 research outputs found

    Microscopic manipulations of interatomic coupling density for tailoring of exchange bias mediated by mesoscopic interface topology

    No full text
    Mesoscopic-scale effects of ferro-antiferromagnetic (F/AF) interface texture are simulated by an atomistic model, considering an exchange bias to be proportional to interfacial density of microscopic F-AF atomic coupled pairs. The model reveals a mediating role of crystalline growth direction on the exchange bias variability by other modifications of interface texture. By adjusting the number of the nearest neighboring atoms belonging to the interface plane, the growth direction defines topological possibility for exchange bias enhancement by roughness, as well as the range, within which the exchange bias can be tailored by substitutional defects. The model has been experimentally approved by investigation of exchange bias and texture modifications in a set of (0 0 1) and (1 1 1) textured NiFe/IrMn bilayers grown on Ta/Cu and Ta/Au hybrid seed layer stacks, respectively. The revealed variations of exchange bias with Au and Cu seed layer thicknesses are gradual, but have opposite signs. The result is well agreed with the simulated variability of coupling pair density for (0 0 1) and (1 1 1) interfaces. This confirms that crystallographic orientation of the F/AF interface plane sets topological possibility for tailoring the exchange bias by microscopic F-AF coupled pair density through mesoscopic modifications of the interface texture. © 2021 Elsevier B.V.1

    Structural, dielectric, and antimicrobial evaluation of PMMA/CeO2 for optoelectronic devices

    No full text
    Abstract In the current report, we have successfully synthesized nanocomposites of PMMA incorporating different doping of CeO2 through a chemical approach. XRD results reflects decent matching for CeO2 nanoparticles with 29 nm crystallite size. FTIR spectroscopy demonstrates the characteristic functional groups validating the successful formation of the composite. The optical study of PMMA and the nanocomposites has proven that the optical properties such as band gap, refractive index, optical permittivity, and loss tangent factor are affected by adding CeO2 to the PMMA matrix.The peak residing around 420 nm by UV measurements is allocated to occurring electrons photoexcitation from the valence to conduction band inherent in CeO2. The dielectric measurements were achieved using broadband dielectric spectroscopy upon a wide span of frequencies (10–1–107 Hz) and within temperatures from − 10 to 80 °C with a step of 10 °C. The permittivity decreases by adding CeO2 and the dielectric parameters are thermally enhanced, however, the temperature influence is based on CeO2 content, the higher the CeO2 amount, the higher the influence of temperature. The results of the nanocomposites revealed antibacterial activity counter to gram-positive bacteria strain (S. aureus, and B. subtilis), and gram-negative bacteria (E. coli, and K. pneumoniae), yeast (C. albicans, as well as fungi (A. niger). Inherently, the change in CeO2 concentration from 0.01 to 0.1 wt% delivers maximum influence against gram-negative bacteria. These PMMA CeO2-doped composites are beneficial for optoelectronic areas and devices

    Current trends in planar Hall effect sensors: evolution, optimization, and applications

    No full text
    The advantages of planar Hall effect (PHE) sensors-their thermal stability, very low detection limits, and high sensitivities-have supported a wide range of advanced applications such as nano-Tesla (nT) magnetometers, current sensing, or low magnetic moment detection in lab-on-a-chip devices. In this review we outline the background and implications of these PHE sensors, starting from fundamental physics through their technological evolution over the past few decades. Key parameters affecting the performance of these sensors, including noise from different sources, thermal stability, and magnetoresistance magnitudes are discussed. The progression of sensor geometries and junctions from disk, cross-to-bridge, ring, and ellipse configuration is also reviewed. The logical sequence of these structures from single magnetoresistive layers to bi-, tri-layers, and spin-valves is also covered. Research contributions to the development of these sensors are highlighted with a focus on microfluidics and flexible sensorics. This review serves as a comprehensive resource for scientists who wish to use PHE for fundamental research or to develop new applications and devices. The conclusions from this report will benefit the development, production, and performance evaluation of PHE-based devices and microfluidics, as well as set the stage for future advances.1

    Current trends in planar Hall effect sensors: evolution, optimization, and applications

    No full text
    Elzwawy A, Piskin H, Akdogan N, et al. Current trends in planar Hall effect sensors: evolution, optimization, and applications. Journal of Physics D: Applied Physics . 2021;54(35): 353002.The advantages of planar Hall effect (PHE) sensors-their thermal stability, very low detection limits, and high sensitivities-have supported a wide range of advanced applications such as nano-Tesla (nT) magnetometers, current sensing, or low magnetic moment detection in lab-on-a-chip devices. In this review we outline the background and implications of these PHE sensors, starting from fundamental physics through their technological evolution over the past few decades. Key parameters affecting the performance of these sensors, including noise from different sources, thermal stability, and magnetoresistance magnitudes are discussed. The progression of sensor geometries and junctions from disk, cross-to-bridge, ring, and ellipse configuration is also reviewed. The logical sequence of these structures from single magnetoresistive layers to bi-, tri-layers, and spin-valves is also covered. Research contributions to the development of these sensors are highlighted with a focus on microfluidics and flexible sensorics. This review serves as a comprehensive resource for scientists who wish to use PHE for fundamental research or to develop new applications and devices. The conclusions from this report will benefit the development, production, and performance evaluation of PHE-based devices and microfluidics, as well as set the stage for future advances

    Highly sensitive and selective detection of Bis-phenol A based on hydroxyapatite decorated reduced graphene oxide nanocomposites

    No full text
    A facile and cost effective chemical reduction method is employed for the preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. The transmission electron microscopy images revealed that the HAp flakes are well decorated on the surface of rGO. The morphological structure of the as-synthesized rGO/HAp nanocomposites was confirmed through X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy, while the composition and thermal stability were analyzed by energy dispersive spectra and thermogravimetric analysis, respectively. Furthermore, the effect of rGO/HAp nanocomposites for the proliferation of Human Mesenchymal Stem Cell (hMSC) was performed to confirm the biocompatibility. A selective chemical sensor based on rGO/HAp modified glassy carbon electrode (GCE) for sensitive detection of Bis-phenol A (BPA) has been developed. Several important parameters controlling the performance of the BPA chemi-sensor were investigated and optimized at room conditions. The rGO/HAp/Nafion/GCE sensor offers a fast response and highly sensitive BPA detection. Under the optimal conditions, a linear range from 0.2 nmol L−1 to 2.0 mmol L−1 for the detection of BPA was observed with the detection limit of 60.0 pmol L−1 (signal-to-noise ratio, at an SNR of 3) and sensitivity of 18.98 × 104 μA.L/μmol.m2. Meanwhile, the fabricated chemi-sensor showed an excellent, specific and selective recognition to target BPA molecules among coexistence of other analytes in the buffer system. This novel effort initiated a well-organized way of efficient rGO/HAp/Nafion/GCE sensor development and practically analyzed the real hazardous environmental pollutants at room conditions. © 2017 Elsevier Ltd

    Reduced thermal dependence of the sensitivity of a planar Hall sensor

    Get PDF
    International audienceThe ability to stabilize the sensitivity of a magnetoresistance sensor in unstable thermal environments is a key parameter in many high precision measurements. Here, we propose a method to stabilize the sensitivity of a highly sensitive and low noise magnetic sensor based on a planar Hall Effect crossed junction. The stability is achieved by controlling the interplay between Zeeman energy, exchange bias energy, and anisotropy energy as a function of the temperature of the sensor stack comprising a trilayer structure NiFe/Cu/IrMn (10/0.12/10 nm). The high thermal stability of the sensor sensitivity of 4.5 ± 0.15 × 10−3 V/A/T/K is achieved when the external magnetic field is set around ±2 ± 0.04 mT and the applied current is fixed at 20 mA in the temperature range of 110 K–360 K. This method improves the magnetic sensor detection by about an order of magnitude, enabling its deployment in various research fields, particularly to study magnetic properties of small quantities of magnetic materials toward the detection of single magnetic objects, which was impossible before
    corecore