7 research outputs found

    A Proposed ANN-Based Acceleration Control Scheme for Soft Starting Induction Motor

    Get PDF
    In this article, a new soft starting control scheme based on an artificial neural network (ANN) is presented for a three-phase induction motor (IM) drive system. The main task of the control scheme is to keep the accelerating torque constant at a level based on the value of reference acceleration. This is accomplished by the proper choice of the firing angles of thyristors in the soft starter. Using the ANN approach, the complexity of the online determination of the thyristors firing angles is resolved. The IM torque-speed characteristic curves are firstly used to train the ANN model. Secondly, the IM- soft starter system is modeled using MATLAB/SIMULINK. To prove the effectiveness of the proposed ANN-based acceleration control scheme, different reference accelerations and loading conditions are applied and investigated. Finally, a laboratory prototype of 3 kW soft starter is implemented. The proposed control scheme is executed in a real-time environment using a digital signal processor (Model: TMS320F28335). The simulation and real-time results significantly confirm that the proposed controller can efficiently reduce the IM starting current and torque pulsations. This in turn ensures a smooth acceleration of the IM during the starting process. Moreover, the proposed control scheme has the superiority over several soft starting control schemes since it has a simple control circuit configuration, less required sensors, and low computational burden of the control algorithm. © 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved

    Numerical estimation of switched reluctance motor excitation parameters based on a simplified structure average torque control strategy for electric vehicles

    Get PDF
    Switched reluctance motors (SRMs) have been receiving great attention in electric vehicle (EV) applications. However, the complicated control and inherent torque ripples are the major drawbacks of SRMs. This paper introduces a numerical estimation method for the optimum control parameters of SRM based on a simplified average torque control (ATC) strategy for EVs. The proposed control aims to simplify the control algorithm to cut down complexity and cost. Besides, it aims to achieve all the vehicle requirements. A multi-objective optimization problem is set to determine the most efficient excitation parameters that can fulfill the vehicle requirements. The objective function has two terms: torque ripple and efficiency. Proper constraints for both turn-on and turn-off angles are included in order to achieve high-performance control, maximum torque per Ampere (MTPA) production, and reliable operation. Besides, additional toque constraints are involved to ensure fast dynamics, high-performance torque tracking capability, and parameter insensitivity. The motor model is accurately achieved based on the experimentally measured torque and flux characteristics. Several simulations are executed to prove the feasibility and effectiveness of the proposed control. Moreover, experimental results are obtained to validate the theoretical findings. It is observed that the proposed control has a significant reduction of torque ripples compared to the conventional control methods. The average reduction ratio of torque ripple over the speed range is about 72.43%. Besides, the proposed control succeeds in maintaining a very good efficiency and high torque/current ratio. It also has a fast-dynamic performanc

    Comparative evaluation for an improved direct instantaneous torque control strategy of switched reluctance motor drives for electric vehicles

    Get PDF
    Due to the expected increase in the electric vehicles (EVs) sales and hence the increase of the price of rare-earth permanent magnets, the switched reluctance motors (SRMs) are gaining increasing research interest currently and in the future. The SRMs offer numerous advantages regarding their structure and converter topologies. However, they suffer from the high torque ripple and complex control algorithms. This paper presents an improved direct instantaneous torque control (DITC) strategy of SRMs for EVs. The improved DITC can fulfill the vehicle requirements. It involves a simple online torque estimator and a torque error compensator. The turn-on angle is defined analytically to achieve wide speed operation and maximum torque per ampere (MTPA) production. Moreover, the turn-off angles are optimized for minimum torque ripples and the highest efficiency. In addition, this paper provides a detailed comparison between the proposed DITC and the most applicable torque control techniques of SRMs for EVs, including indirect instantaneous torque control (IITC), using torque sharing function (TSF) strategy and average torque control (ATC). The results show the superior performance of the proposed DITC because it has the lowest torque ripples, the highest torque tor current ratio, and the best efficiency over the low and medium speed ranges. Moreover, the comparison shows the advantages of each control technique over the range of speed control. It provides a very clear overview to develop a universal control technique of SRM for EVs by merging two or more control techniques

    An improved indirect instantaneous torque control strategy of switched reluctance motor drives for light electric vehicles

    Get PDF
    The switched reluctance motors (SRMs) are powerful alternatives for electric vehicles (EVs). However, the high torque ripple is the main obstacle for their acceptance in high-performance applications. This paper introduces an improved indirect instantaneous torque control (IITC) strategy of SRMs for EVs. It aims to achieve the vehicle requirements including maximum torque per ampere (MTPA), minimum torque ripple, high efficiency, and extended speed range. First, a simple analytical formulation that determines the most efficient turn-on angle for torque production is developed. Second, A modified torque sharing function (TSF) is introduced to compensate for torque tracking errors. To accurately represent the SRM, its magnetic characteristics are calculated using finite element method (FEM). They are employed to build machine model and implement the required transformations. Finally, the particle swarm optimization (PSO) algorithm is adopted to determine the best control parameters for the conventional IITC. This is done basically for comparison and verification purposes. The results show the feasibility and effectiveness of the proposed control over extended speed range

    An efficient framework for adequacy evaluation through extraction of rare load curtailment events in composite power systems

    Get PDF
    With the growing robustness of modern power systems, the occurrence of load curtailment events is becoming lower. Hence, the simulation of these events constitutes a challenge in adequacy indices assessment. Due to the rarity of the load curtailment events, the standard Monte Carlo simulation (MCS) estimator of adequacy indices is not practical. Therefore, a framework based on the enhanced cross-entropy-based importance sampling (ECE-IS) method is introduced in this paper for computing the adequacy indices. The framework comprises two stages. Using the proposed ECE-IS method, the first stage’s purpose is to identify the samples or states of the nodal generation and load that are greatly significant to the adequacy indices estimators. In the second stage, the density of the input variables’ conditional on the load curtailment domain obtained by the first stage are used to compute the nodal and system adequacy indices. The performance of the ECE-IS method is verified through a comparison with the standard MCS method and the recent techniques of rare events simulation in literature. The results confirm that the proposed method develops an accurate estimation for the nodal and system adequacy indices (loss of load probability (LOLP), expected power not supplied (EPNS)) with appropriate convergence value and low computation time

    Oscillation Criteria for Qusilinear Even-Order Differential Equations

    No full text
    In this study, we extended and improved the oscillation criteria previously established for second-order differential equations to even-order differential equations. Some examples are given to demonstrate the significance of the results accomplished

    New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations

    No full text
    In this work, we deduce a new criterion that guarantees the oscillation of solutions to linear Sturm–Liouville delay noncanonical dynamic equations; these results emulate the criteria of the Hille and Ohriska types for canonical dynamic equations, and these results also solve an open problem in many works in the literature. Several examples are offered, demonstrating that the findings achieved are precise, practical, and adaptable
    corecore