80 research outputs found

    The Role of Speckle Tracking Echocardiography in the Evaluation of Common Inherited Cardiomyopathies in Children and Adolescents: A Systematic Review

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement: Data available on request.Speckle tracking echocardiography (STE) has gained importance in the evaluation of adult inherited cardiomyopathies, but its utility in children is not well characterized. We conducted a systematic review to evaluate the role of STE in pediatric inherited cardiomyopathies. PubMed, EMBASE, Web of Science, Scopus, CENTRAL and CINAHL databases were searched up to May 2020, for terms related to inherited cardiomyopathies and STE. Included were dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), left ventricular non-compaction (LVNC) and arrhythmogenic cardiomyopathy (ACM). A total of 14 cohorts were identified, of which six were in DCM, four in HCM, three in LVNC and one in ACM. The most commonly reported STE measurements were left ventricular longitudinal strain (Sl), circumferential strain (Sc), radial strain (Sr) and rotation/torsion/twist. Sl, Sc and were abnormal in all DCM and LVNC cohorts, but not in all HCM. Apical rotation and twist/torsion were increased in HCM, and decreased in LVNC. Abnormal STE parameters were reported even in cohorts with normal non-STE systolic/diastolic measurements. STE in childhood cardiomyopathies can detect early changes which may not be associated with changes in cardiac function detectable by non-STE methods. Longitudinal and circumferential strain should be introduced in the cardiomyopathy echocardiography protocol, reflecting current practice in adults.Medical Research Council (MRC)Majlis Amanah Rakyat (MARA)University of ExeterCanon Medical Systems UK Ltd

    The Role of Speckle-Tracking Echocardiography in Predicting Mortality and Morbidity in Patients With Congenital Heart Disease: A Systematic Review and Meta-analysis

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData Availability Statement: The data underlying this article will be shared on reasonable request to the corresponding authorBACKGROUND: Speckle-tracking echocardiography (STE) is now routinely included in cardiac evaluations, but its role in predicting mortality and morbidity in congenital heart disease (CHD) is not well described. We conducted a systematic review to evaluate the prognostic value of STE in patients with CHD. METHODS: The EMBASE, Medline, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched from inception to January 2023 for terms related to all CHD, STE, and prognosis. Meta-analysis of association of right ventricle and left ventricle strain (RV Sl and LV Sl, respectively) with major adverse cardiovascular events (MACEs) was performed in atrial switch transposition of the great arteries (asTGA)/congenitally corrected TGA (ccTGA), tetralogy of Fallot (ToF), and congenital aortic stenosis (cAS)/bicuspid aortic valve (BAV). P-value combination analysis was additionally performed for all CHD groups. RESULTS: A total of 33 studies (30 cohorts, n = 8,619 patients, children, and adults) were included. Meta-analysis showed the following parameters as being associated with MACE: RV Sl in asTGA/ccTGA (hazard ratio [HR] = 1.1/%; CI, [1.03; 1.18]), RV Sl and LV Sl in ToF (HR = 1.14/%; CI, [1.03; 1.26] and HR = 1.14/%; CI, [1.08; 1.2], respectively), and LV Sl in cAS/BAV (HR = 1.19/%; CI, [1.15; 1.23]). The RV Sl and strain rate were associated with outcomes also in single ventricle/hypoplastic left heart syndrome (at all palliation stages except before Norwood stage 1) and LV Sl in Ebstein's anomaly. CONCLUSIONS: This systematic review and meta-analysis showed that biventricular strain and strain rate were associated with outcomes in a variety of CHD, highlighting the need for updated recommendations on the use of STE in the current guidelines, specific to disease types

    Parental recommendations and exercise attitudes in congenital hearts.

    Get PDF
    BACKGROUND: Children and young people with CHD benefit from regular physical activity. Parents are reported as facilitators and barriers to their children's physical activity. The aim of this study was to explore parental factors, child factors, and their clinical experience on physical activity participation in young people with CHD. METHODS: An online questionnaire was co-developed with parents (n = 3) who have children with CHD. The survey was then distributed in the United Kingdom by social media and CHD networks, between October 2021 and February 2022. Data were analysed using mixed methods. RESULTS: Eighty-three parents/guardians responded (94% mothers). Young people with CHD were 7.3 ± 5.0 years old (range 0-20 years; 53% female) and 84% performed activity. Parental participation in activity (X2(1) = 6.9, P < 0.05) and perceiving activity as important for their child were positively associated with activity (Fisher's Exact, P < 0.05). Some parents (∼15%) were unsure of the safety of activity, and most (∼70%) were unsure where to access further information about activity. Fifty-two parents (72%) had never received activity advice in clinic, and of the 20 who received advice, 10 said it was inconsistent. Qualitative analysis produced the theme "Knowledge is power and comfort." Parents described not knowing what activity was appropriate or the impact of it on their child. CONCLUSION: Parental participation and attitudes towards activity potentially influence their child's activity. A large proportion of young people performed activity despite a lack and inconsistency of activity advice offered by CHD clinics. Young people with CHD would benefit from activity advice with their families in clinics

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Single-cell analysis tools for drug discovery and development

    Get PDF
    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed

    The role of microglia in human disease: therapeutic tool or target?

    Get PDF
    corecore