6,874 research outputs found

    A Note on TeV Cerenkov Events as Bose-Einstein Gamma Condensations

    Get PDF
    The idea that the TeV air showers, thought to be produced by >10 TeV gamma rays from Mrk 501, can be mimicked by coherent bunches of sub-TeV photons is reexamined, focusing on fundamental considerations. In particular, it is shown that the minimum spot size of the beam of pulsed TeV photons arriving at Earth is on the order of a few kilometers, unless a lens with certain characteristics is placed between the TeV laser and Earth. The viability of the laser production mechanism proposed by Harwit et al. (2000) is also reassessed.Comment: 4 page

    On the Power Efficiency of Sensory and Ad Hoc Wireless Networks

    Get PDF
    We consider the power efficiency of a communications channel, i.e., the maximum bit rate that can be achieved per unit power (energy rate). For additive white Gaussian noise (AWGN) channels, it is well known that power efficiency is attained in the low signal-to-noise ratio (SNR) regime where capacity is proportional to the transmit power. In this paper, we first show that for a random sensory wireless network with n users (nodes) placed in a domain of fixed area, with probability converging to one as n grows, the power efficiency scales at least by a factor of sqrt n. In other words, each user in a wireless channel with n nodes can support the same communication rate as a single-user system, but by expending only 1/(sqrt n) times the energy. Then we look at a random ad hoc network with n relay nodes and r simultaneous transmitter/receiver pairs located in a domain of fixed area. We show that as long as r ≀ sqrt n, we can achieve a power efficiency that scales by a factor of sqrt n. We also give a description of how to achieve these gains

    Cosmological simulations with hydrodynamics of screened scalar-tensor gravity with non-universal coupling

    Full text link
    In this paper we study the effects of letting the dark matter and the gas in the Universe couple to the scalar field of the symmetron model, a modified gravity theory, with varying coupling strength. We also search for a way to distinguish between universal and non-universal couplings in observations. The research is performed utilising a series of hydrodynamic, cosmological N-Body simulations, studying the resulting power spectra and galaxy halo properties, such as the density and temperature profiles. Results show that in the cases of universal couplings, the deviations in the baryon fraction from Λ\LambdaCDM are smaller than in the cases of non-universal couplings throughout the halos. The same is apparent in the power spectrum baryon bias, defined as the ratio of gas to dark matter power spectrum. Deviations of the density profiles and power spectra from the Λ\LambdaCDM reference values can differ significantly between dark matter and gas because the dark matter deviations are mostly larger than the deviations in the gas.Comment: Updated following referee reports, results unchange

    The Early Restart Algorithm

    Get PDF
    Consider an algorithm whose time to convergence is unknown (because of some random element in the algorithm, such as a random initial weight choice for neural network training). Consider the following strategy. Run the algorithm for a specific time T. If it has not converged by time T, cut the run short and rerun it from the start (repeat the same strategy for every run). This so-called restart mechanism has been proposed by Fahlman (1988) in the context of backpropagation training. It is advantageous in problems that are prone to local minima or when there is a large variability in convergence time from run to run, and may lead to a speed-up in such cases. In this article, we analyze theoretically the restart mechanism, and obtain conditions on the probability density of the convergence time for which restart will improve the expected convergence time. We also derive the optimal restart time. We apply the derived formulas to several cases, including steepest-descent algorithms

    Axionic extension of the Einstein-aether theory: How does dynamic aether regulate the state of axionic dark matter?

    Full text link
    In the framework of axionic extension of the Einstein-aether theory we establish the model, which describes a stiff regulation of the behavior of axionic dark matter by the dynamic aether. The aether realizes this procedure via the modified Higgs potential, designed for modeling of nonlinear self-interaction of pseudoscalar (axion) field; the modification of this potential is that its minima are not fixed, and their positions and depths depend now on the square of the covariant derivative of the aether velocity four-vector. Exact solutions to the master equations, modified correspondingly, are obtained in the framework of homogeneous isotropic cosmological model. The effective equation of state for axionic dark matter is of the stiff type. Homogeneous perturbations of the pseudoscalar (axion) field, of the Hubble function and of the scale factor are shown to fade out with cosmological time, there are no growing modes, the model of stiff regulation is stable.Comment: 12 pages, 0 figures, revised version published in Physics of the Dark Univers

    On the Capacity Region of Multi-Antenna Gaussian Broadcast Channels with Estimation Error

    Get PDF
    In this paper we consider the effect of channel estimation error on the capacity region of MIMO Gaussian broadcast channels. It is assumed that the receivers and the transmitter have (the same) estimates of the channel coefficients (i.e., the feedback channel is noiseless). We obtain an achievable rate region based on the dirty paper coding scheme. We show that this region is given by the capacity region of a dual multi-access channel with a noise covariance that depends on the transmit power. We explore this duality to give the asymptotic behavior of the sum-rate for a system with a large number of user, i.e., n rarr infin. It is shown that as long as the estimation error is of fixed (w.r.t n) variance, the sum-capacity is of order M log log n, where M is the number of antennas deployed at the transmitter. We further obtain the sum-rate loss due to the estimation error. Finally, we consider a training-based scheme for block fading MISO Gaussian broadcast channels. We find the optimum length of the training interval as well as the optimum power used for training in order to maximize the achievable sum-rate
    • 

    corecore