5 research outputs found

    Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites.

    Get PDF
    Although the polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women with vast metabolic consequences, its etiology remains unknown and its diagnosis is still made by exclusion. This study aimed at characterizing a large number of urinary steroid hormone metabolites and enzyme activities in women with and without PCOS in order to test their value for diagnosing PCOS. Comparative steroid profiling of 24h urine collections using an established in-house gas-chromatography mass spectrometry method. Data were collected mostly prospectively. Patients were recruited in university hospitals in Switzerland. Participants were 41 women diagnosed with PCOS according to the current criteria of the Androgen Excess and PCOS Society Task Force and 66 healthy controls. Steroid profiles of women with PCOS were compared to healthy controls for absolute metabolite excretion and for substrate to product conversion ratios. The AUC for over 1.5 million combinations of metabolites was calculated in order to maximize the diagnostic accuracy in patients with PCOS. Sensitivity, specificity, PPV, and NPV were indicated for the best combinations containing 2, 3 or 4 steroid metabolites. The best single discriminating steroid was androstanediol. The best combination to diagnose PCOS contained four of the forty measured metabolites, namely androstanediol, estriol, cortisol and 20βDHcortisone with AUC 0.961 (95% CI 0.926 to 0.995), sensitivity 90.2% (95% CI 76.9 to 97.3), specificity 90.8% (95% CI 81.0 to 96.5), PPV 86.0% (95% CI 72.1 to 94.7), and NPV 93.7% (95% CI 84.5 to 98.2). PCOS shows a specific 24h urinary steroid profile, if neglected metabolites are included in the analysis and non-conventional data analysis applied. PCOS does not share a profile with hyperandrogenic forms of congenital adrenal hyperplasias due to single steroid enzyme deficiencies. Thus PCOS diagnosis by exclusion may no longer be warranted. Whether these findings also apply to spot urine and serum, remains to be tested as a next step towards routine clinical applicability

    Defective Jagged1 signaling impacts GnRH development and contributes to congenital hypogonadotropic hypogonadism

    Full text link
    In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare genetic disorders characterized by infertility and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling.Here, we documented the expression of Jagged 1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knock-down of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs.Next-generation sequencing was performed in 467 CHH unrelated probands leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibit reduced protein levels and altered subcellular localization.Altogether our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans

    Aggressive pituitary tumours and carcinomas, characteristics and management of 171 patients

    No full text
    To describe clinical and pathological characteristics and treatment outcomes in a large cohort of aggressive pituitary tumours (APT)/pituitary carcinomas (PC)
    corecore