21 research outputs found

    Chemical vapor deposition of low reflective cobalt (II) oxide films

    Get PDF
    Low reflective CoO coatings are processed by chemical vapor deposition from Co2(CO)8at temperatures between 120◦C and 190◦C without additional oxygen source. The optical reflectivity in the visible and near infrared regions stems from 2 to 35% depending on deposition temperature. The combination of specific microstructural features of the coatings, namely a fractal “cauliflower” morphology and a grain size distribution more or less covering the near UV and IR wavelength ranges enhance light scattering and gives rise to a low reflectivity. In addition, the columnar morphology results in a density gradient in the vertical direction that we interpret as a refractive index gradient lowering reflectivity further down.The coating formed at 180◦C shows the lowest average reflectivity (2.9%), and presents an interesting deep black diffuse aspect

    Black co oxides coatings for thermosensitive polymer surfaces by low-temperature DLI-MOCVD.

    Get PDF
    Black coatings are deposited at low temperature in order to enable the functionalization of thermosensitive substrates, such as epoxy-based carbon fiber reinforced polymers (CFRP). The direct liquid injection metalorganic chemical vapor deposition of Co oxide films is performed with the dicobalt octacarbonyl precursor, Co2(CO)8, in the temperature range 50 °C–160 °C, on Si substrates, first. Films morphology can be described by a dense sublayer on which the typical “cauliflower” microstructure grows, with a large amount of voids and open porosity. We obtain nanocrystalline CoO in the deposition temperature range 50 °C–125 °C, and nanocrystalline (CoO +Co3O4) above 125 °C. The bulk composition of the films is Co(45)O(45)C(10). Over the deposition temperatures tested, films processed at 125 °C repetitively show the lowest reflectivity in the visible range. An important role in the optical reflectivity is attributed to the carbon content, although it is not possible to decorrelate microstructural changes from the carbon elimination in calcination experiments. Finally, we reproduce the above-mentioned results with success on CFRP substrates, and demonstrate the applicability of the process on thermosensitive composite parts with results comparable to the state-of-the-art in the visible range

    Metallization of carbon fiber reinforced polymers: Chemical kinetics, adhesion, and properties

    Get PDF
    In the present study, we investigate different surface pretreatments and their influence on a subsequent surface metallization. A direct liquid injection metalorganic CVD (DLI-MOCVD) process is presented for the low temperature metallization of composites, ultimately aiming at the surface unctionalization of 3D parts. The process involves the organometallic precursor Cu(I) hexafluoroacetylacetonate 2-methyl-1-hexene-3-yne (hfac)Cu(MHY). We determine chemical kinetics of the global deposition reaction and show the improvement of the adhesion of the Cu films by applying surface pretreatments that etch and/or activate the surface before deposition. To this purpose, gas phase and wet chemical processes are used. Gas phase pretreatments consist either in the use of a remote microwave plasma, an in situ UV oxidation, or in the deposition of acrylic acid/ethylene plasma buffer layer by using an atmospheric pressure cold plasma jet. The liquid phase pretreatment is based on a commercial series of solutions that includes swelling, oxidation, and neutralization steps. The adhesive strength of the Cu films on poly-epoxy and on carbon fiber/poly-epoxy composite surfaces is specifically investigated by scratch and cross-cut testing, and is correlatedwith topographical, chemical, and energetic characteristics of the surfaces prior deposition, investigated by interferometry, X-ray photoelectron spectroscopy and wettability measurements through the sessile drop method. Pretreatments result in surface functionalization and topographical changes which significantly increase the surface energy and improve the wettability. In some cases the induced modification of the microstructure of the Cu films is found to be eneficial to the electrical resistivity

    Etude des processus thermophysiques en régime d'interaction laser/matière nanoseconde par pyro/réflectométrie rapide

    No full text
    The recent development of nanotechnology has made the study and the characterisation of thermal properties of thin films and nanomaterials very important for the development and the quality of new technologies. Our experimental setup is designed and built in order to study different phenomena, in real time, that arise while the interaction of a laser with materials at the nanosecond scale. This system is composed of two complementary optical diagnostics, the time resolved reflectivity and the fast infrared pyrometry. First, we have shown the ability to study in real time the surface structural changes in the case of a thin metal layer deposited on an insulating substrate, the phenomenon of photoluminescence and the kinetics of melting/resolidification and also the ablation. In addition, we present a novel method in order to determine the thermal properties (volumetric heat capacity and thermal conductivity) of nanostructured surfaces. The analysis is based on the use of a proven theoretical model that is adjusted with an optimisation algorithm on our experimental measurements.Face au développement actuel des nanotechnologies, l'étude et la caractérisation des propriétés thermiques des couches minces et des nanomatériaux devient nécessaire pour le développement et la qualité des nouvelles technologies. Notre système expérimental a été conçu et mis en oeuvre dans le but d'étudier les différents phénomènes qui régissent l'interaction matière/laser nanoseconde en temps réel. Ce système est composé de deux méthodes optiques complémentaires : la réflectivité résolue en temps RRT et la pyrométrie infrarouge rapide PIR. Nous avons montré dans un premier temps la possibilité d'étudier en temps réel les modifications de l'état de surface d'une couche mince métallique déposée sur un substrat isolant, le phénomène de photoluminescence ainsi que la cinétique de fusion/resolidification et celle de l'ablation. De plus, nous présenterons une méthode originale afin de déterminer les propriétés thermiques (la capacité calorifique volumique et la conductivité thermique) des surfaces nanostructurées. L'analyse nécessite une préparation de l'échantillon ainsi que l'utilisation d'un modèle théorique éprouvé que l'on ajuste avec un algorithme d'optimisation sur nos relevés expérimentaux

    Fast pyro/reflectometry study of thermophysical processus induced by nanosecond laser/material interaction

    No full text
    Face au développement actuel des nanotechnologies, l'étude et la caractérisation des propriétés thermiques des couches minces et des nanomatériaux devient nécessaire pour le développement et la qualité des nouvelles technologies. Notre système expérimental a été conçu et mis en oeuvre dans le but d'étudier les différents phénomènes qui régissent l'interaction matière/laser nanoseconde en temps réel. Ce système est composé de deux méthodes optiques complémentaires : la réflectivité résolue en temps RRT et la pyrométrie infrarouge rapide PIR. Nous avons montré dans un premier temps la possibilité d'étudier en temps réel les modifications de l'état de surface d'une couche mince métallique déposée sur un substrat isolant, le phénomène de photoluminescence ainsi que la cinétique de fusion/resolidification et celle de l'ablation. De plus, nous présenterons une méthode originale afin de déterminer les propriétés thermiques (la capacité calorifique volumique et la conductivité thermique) des surfaces nanostructurées. L'analyse nécessite une préparation de l'échantillon ainsi que l'utilisation d'un modèle théorique éprouvé que l'on ajuste avec un algorithme d'optimisation sur nos relevés expérimentaux.The recent development of nanotechnology has made the study and the characterisation of thermal properties of thin films and nanomaterials very important for the development and the quality of new technologies. Our experimental setup is designed and built in order to study different phenomena, in real time, that arise while the interaction of a laser with materials at the nanosecond scale. This system is composed of two complementary optical diagnostics, the time resolved reflectivity and the fast infrared pyrometry. First, we have shown the ability to study in real time the surface structural changes in the case of a thin metal layer deposited on an insulating substrate, the phenomenon of photoluminescence and the kinetics of melting/resolidification and also the ablation. In addition, we present a novel method in order to determine the thermal properties (volumetric heat capacity and thermal conductivity) of nanostructured surfaces. The analysis is based on the use of a proven theoretical model that is adjusted with an optimisation algorithm on our experimental measurements

    Etude des processus thermophysiques en régime d'interaction laser/matière nanoseconde par pyro/réflectométrie rapide

    No full text
    Face au développement actuel des nanotechnologies, l'étude et la caractérisation des propriétés thermiques des couches minces et des nanomatériaux devient nécessaire pour le développement et la qualité des nouvelles technologies. Notre système expérimental a été conçu et mis en oeuvre dans le but d'étudier les différents phénomènes qui régissent l'interaction matière/laser nanoseconde en temps réel. Ce système est composé de deux méthodes optiques complémentaires : la réflectivité résolue en temps RRT et la pyrométrie infrarouge rapide PIR. Nous avons montré dans un premier temps la possibilité d'étudier en temps réel les modifications de l'état de surface d'une couche mince métallique déposée sur un substrat isolant, le phénomène de photoluminescence ainsi que la cinétique de fusion/resolidification et celle de l'ablation. De plus, nous présenterons une méthode originale afin de déterminer les propriétés thermiques (la capacité calorifique volumique et la conductivité thermique) des surfaces nanostructurées. L'analyse nécessite une préparation de l'échantillon ainsi que l'utilisation d'un modèle théorique éprouvé que l'on ajuste avec un algorithme d'optimisation sur nos relevés expérimentaux.The recent development of nanotechnology has made the study and the characterisation of thermal properties of thin films and nanomaterials very important for the development and the quality of new technologies. Our experimental setup is designed and built in order to study different phenomena, in real time, that arise while the interaction of a laser with materials at the nanosecond scale. This system is composed of two complementary optical diagnostics, the time resolved reflectivity and the fast infrared pyrometry. First, we have shown the ability to study in real time the surface structural changes in the case of a thin metal layer deposited on an insulating substrate, the phenomenon of photoluminescence and the kinetics of melting/resolidification and also the ablation. In addition, we present a novel method in order to determine the thermal properties (volumetric heat capacity and thermal conductivity) of nanostructured surfaces. The analysis is based on the use of a proven theoretical model that is adjusted with an optimisation algorithm on our experimental measurements.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF
    corecore