216 research outputs found
Recommended from our members
Waste Recycling in Thermoelectric Materials
Thermoelectric (TE) technology enables the efficient conversion of waste heat generated in homes, transport, and industry into promptly accessible electrical energy. Such technology is thus finding increasing applications given the focus on alternative sources of energy. However, the synthesis of TE materials relies on costly and scarce elements, which are also environmentally damaging to extract. Moreover, spent TE modules lead to a waste of resources and cause severe pollution. To address these issues, many laboratory studies have explored the synthesis of TE materials using wastes and the recovery of scarce elements from spent modules, e.g., utilization of Si slurry as starting materials, development of biodegradable TE papers, and bacterial recovery and recycling of tellurium from spent TE modules. Yet, the outcomes of such work have not triggered sustainable industrial practices to the extent needed. This paper provides a systematic overview of the state of the art with a view to uncovering the opportunities and challenges for expanded application. Based on this overview, it explores a framework for synthesizing TE materials from waste sources with efficiencies comparable to those made from raw materials
The Quality of Abstraction of Philosophical Concepts based on the Foundations of Transcendental Wisdom
Secondary philosophical rationality emerges as a branch of the discussion of science and understanding in Islamic philosophy. This argument can be examined from both ontological and epistemological aspects and there is a close relationship between its ontological and epistemological directions. This debate in Islamic philosophy has been examined more regarding the ontological aspect. One of the long-standing debates between East and West philosophers is the quality of the mind's access to these concepts. This research seeks to prove the direct and immediate perception of these concepts on the basis of some of the foundations of transcendental wisdom, including the conception and validation of philosophical concepts abroad, as well as the existence of the self and the quality of its perception, from outside and from the inside of sensory perception. Although this theory does not exist in the works of Sadr al-MutiâallihÄ«n, but his philosophical foundations provide the context for such an explanation
Recommended from our members
Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials
Thermoelectric (TE) materials are prominent candidates for energy converting applications due to their excellent performance and reliability. Extensive efforts for improving their efficiency in single-/multi-phase composites comprising nano/micro-scale second phases are being made. The artificial decoration of second phases into the thermoelectric matrix in multi-phase composites, which is distinguished from the second-phase precipitation occurring during the thermally equilibrated synthesis of TE materials, can effectively enhance their performance. Theoretically, the interfacial manipulation of phase boundaries can be extended to a wide range of materials. High interface densities decrease thermal conductivity when nano/micro-scale grain boundaries are obtained and certain electronic structure modifications may increase the power factor of TE materials. Based on the distribution of second phases on the interface boundaries, the strategies can be divided into discontinuous and continuous interfacial modifications. The discontinuous interfacial modifications section in this review discusses five parts chosen according to their dispersion forms, including metals, oxides, semiconductors, carbonic compounds, and MXenes. Alternatively, gas- and solution-phase process techniques are adopted for realizing continuous surface changes, like the coreâshell structure. This review offers a detailed analysis of the current state-of-the-art in the field, while identifying possibilities and obstacles for improving the performance of TE materials
Recommended from our members
Encapsulation of locally welded silver nanowire with water-free ALD-SbOx for flexible thin-film transistors
Transparent conductive electrodes are essential in the application of flexible electronics. In this work, we successfully demonstrated a novel strategy for improving mechanical/electrical properties of indium tin oxide (ITO)-free flexible silver nanowire (Ag NW) thin films. To reduce the contact resistance of Ag NWs, an ethanol-mist was used to weld the cross junction of wires at room temperature. The nano-welded Ag NWs (W-Ag NWs) were then coated with an aluminum-doped ZnO (AZO) solution, which significantly reduce the roughness of the Ag NW thin film. Finally, an ultrathin SbOx thin film of 2 nm was deposited on the film surface using a water-free low-temperature atomic layer deposition technique to protect the W-Ag NW/AZO layer from water or oxygen degradation. The treated Ag NWs have a high transmittance of 87% and a low sheet resistance of about 15 Ï/sq, which is comparable with the ITO electrode's property. After 1000 cycles of bending testing, the W-Ag NW/AZO/SbOx film practically retains its initial conductivity. Furthermore, the samples were immersed in a solution with pH values ranging from 3 to 13 for 5 min. When compared to untreated Ag NWs or those coated with AlOx thin films, W-Ag NW/AZO/SbOx had superior electrical stability. The W-Ag NW/AZO/SbOxlayer was integrated as a gate electrode on low-power operating flexible Ti-ZnO thin film transistors (TFTs). The 5% Ti-ZnO TFT has a field-effect mobility of 19.7 cm2 V s-1, an Ion/Ioff ratio of 107, and a subthreshold swing of 147 mV decade-1
Recommended from our members
Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries
Rechargeable lithium-ion batteries (LIBs) are one of the most promising alternatives to effectively bypass fossil fuels. However, long-term energy application of LIBs could be restricted in the future due to the increased production cost of LIB arising from the shortage and inaccessibility of Li in the Earth's crust. Na or K have been considered as substitutes for Li but in spite of their natural abundance, they suffer from low gravimetric/volumetric energy density. An alternative to increase the efficiency of sodium-ion battery (SIBs) and potassium-ion battery (KIBs) is to focus on finding the highâperforming negative electrode, the anode. The large volume changes of alloying and conversion type anodes for KIBs and SIBs make hard carbons to a better option on this regard than usual graphitic carbons, but a key obstacle is the reliance on unsustainable sources. Thus, biomass-derived carbon could offer a promising alternative, and it has indeed been in the focus of much recent work. This review highlights the recent advances in using carbon extracted from various biomass sources in rechargeable Li-, Na-, and K-ion batteries. Maximizing the energy and power densities as well as the lifetime of carbon anodes require an exploration of the right balance between carbon structures, pore morphology, chemical composition and alkali metal-ion storage. Thus, in this review, first, we take stock of key challenges and opportunities to extract carbon from various plants structural components and identify the extracted carbon structure compared to graphite-like structure. Then, we provide an overview on morphological and structural modification of the extracted carbons. Finally, we show how the physicochemical properties, structural alignment and morphological variation of the biomass-derived carbon can affect the storage mechanism and electrochemical performance. The extensive overview of this topic provided here is expected to stimulate further work on environmentally friendly battery design and towards the optimization of the battery performance. Electrode materials in alkali-metal-ion batteries that are based on biomass-derived carbon may allow not only a technical breakthrough, but also an ethically and socially acceptable product
Prevalence of infertility in women with genital tuberculosis: a systematic review and meta-analysis
Infertility is a worldwide concern which has a variety of causes. This study was aimed to investigate the prevalence of infertility in women with genital tuberculosis. A search of PubMed, Science Direct, Scopus, Google Scholar and Cochrane databases (from 1990 to the present, date of last search February 2016) was performed using the keywords tuberculosis, genital tuberculosis, female genital, bacteriological, histological, infertility, primary infertility, secondary infertility, fallopian tube diseases, Asherman syndrome, women genital tract, fertility outcome, reproductive outcome, Â prevalence, rate, percent in order to identify the studies which have reported the prevalence of infertility in women with genital tuberculosis. Data were extracted, and a meta-analysis was done. Seven studies were identified. The prevalence of infertility among women with genital TB with 95% confidence interval was 70.67% (58.30-83.03). Also, the prevalence of primary infertility and secondary infertility among genital tuberculosis cases were 75.70% (69.03-82.36) and 24.30% (17.64-30.97), respectively. The prevalence of infertility in women with genital tuberculosis is high. Therefore, prevention and treatment of genital tuberculosis can be considered as a way to reduce the infertility rate.</p
Recommended from our members
Water-Free SbOx ALD Process for Coating Bi2Te3 Particle
We developed a water-free atomic layer deposition (ALD) process to homogeneously deposit SbOx using SbCl5 and Sb-Ethoxide as precursors, and report it here for the first time. The coating is applied on Bi2Te3 particles synthesized via the solvothermal route to enhance the thermoelectric properties (i.e., Seebeck coefficient, thermal and electrical conductivity) via interface engineering. The amorphous character of the coating was shown by the missing reflexes on the X-ray diffractograms (XRD). A shift from the oxidation state +III to +V of the Sb species was observed using X-ray photoelectron spectroscopy (XPS), indicating increased thickness of the SbOx coating layer. Additionally, a peak shift of the Sb 3d5/2 + O 1s peak indicated increased n-type doping of the material. Electrical measurements of spark plasma-sintered bulk samples confirmed the doping effect on the basis of decreased specific resistivity with increasing SbOx layer thickness. The Seebeck coefficient was improved for the coated sample with 500 cycles of SbOx, while the total thermal conductivity was reduced, resulting in enhancement of the zT. The results distinctly show that surface engineering via powder ALD is an effective tool for improving key properties of thermoelectric materials like electrical conductivity and the Seebeck coefficient
Multi-frequency piezomagnetoelastic energy harvesting in the monostable mode
The present article investigates effects of the multi-frequency excitation on the output power of a piezomagnetoelastic energy harvester. The piezomagnetoelastic power generator is assumed to operate in the mono-stable mode. A perturbation technique based on the method of multiple scales is employed to develop an analytical solution to nonlinear differential equations governing the system dynamics. In addition, a Runge-Kutta numerical scheme is used to solve the differential equations. It is shown that the perturbation solution is in a close agreement with the numerical solution. The system response is determined for several cases including super-harmonic, combination and simultaneous resonances. The steady-state output voltage is then obtained for each case and compared with that of a single-frequency excitation. Due to nonlinearities present in the system, a multi-frequency excitation gives rise to complicated phenomena such ascombination and simultaneous resonances. It is found out that exploiting these resonances can significantly increase the amount of energy harvested
- âŠ