29 research outputs found

    Treadmill training in Parkinson's disease is underpinned by the interregional connectivity in cortical-subcortical network

    Get PDF
    Treadmill training (TT) has been extensively used as an intervention to improve gait and mobility in patients with Parkinson’s disease (PD). Regional and global effects on brain activity could be induced through TT. Training effects can lead to a beneficial shift of interregional connectivity towards a physiological range. The current work investigates the effects of TT on brain activity and connectivity during walking and at rest by using both functional near-infrared spectroscopy and functional magnetic resonance imaging. Nineteen PD patients (74.0 ± 6.59 years, 13 males, disease duration 10.45 ± 6.83 years) before and after 6 weeks of TT, along with 19 age-matched healthy controls were assessed. Interregional effective connectivity (EC) between cortical and subcortical regions were assessed and its interrelation to prefrontal cortex (PFC) activity. Support vector regression (SVR) on the resting-state ECs was used to predict prefrontal connectivity. In response to TT, EC analysis indicated modifications in the patients with PD towards the level of healthy controls during walking and at rest. SVR revealed cerebellum related connectivity patterns that were associated with the training effect on PFC. These findings suggest that the potential therapeutic effect of training on brain activity may be facilitated via changes in compensatory modulation of the cerebellar interregional connectivity

    Longitudinal cortical network reorganization in early relapsing-remitting multiple sclerosis

    Get PDF
    BACKGROUND: Network science provides powerful access to essential organizational principles of the brain. The aim of this study was to investigate longitudinal evolution of gray matter networks in early relapsing-remitting MS (RRMS) compared with healthy controls (HCs) and contrast network dynamics with conventional atrophy measurements. METHODS: For our longitudinal study, we investigated structural cortical networks over 1 year derived from 3T MRI in 203 individuals (92 early RRMS patients with mean disease duration of 12.1 ± 14.5 months and 101 HCs). Brain networks were computed based on cortical thickness inter-regional correlations and fed into graph theoretical analysis. Network connectivity measures (modularity, clustering coefficient, local efficiency, and transitivity) were compared between patients and HCs, and between patients with and without disease activity. Moreover, we calculated longitudinal brain volume changes and cortical atrophy patterns. RESULTS: Our analyses revealed strengthening of local network properties shown by increased modularity, clustering coefficient, local efficiency, and transitivity over time. These network dynamics were not detectable in the cortex of HCs over the same period and occurred independently of patients' disease activity. Most notably, the described network reorganization was evident beyond detectable atrophy as characterized by conventional morphometric methods. CONCLUSION: In conclusion, our findings provide evidence for gray matter network reorganization subsequent to clinical disease manifestation in patients with early RRMS. An adaptive cortical response with increased local network characteristics favoring network segregation could play a primordial role for maintaining brain function in response to neuroinflammation

    Art therapy for Parkinson's disease.

    Get PDF
    Abstract Objective To explore the potential rehabilitative effect of art therapy and its underlying mechanisms in Parkinson's disease (PD). Methods Observational study of eighteen patients with PD, followed in a prospective, open-label, exploratory trial. Before and after twenty sessions of art therapy, PD patients were assessed with the UPDRS, Pegboard Test, Timed Up and Go Test (TUG), Beck Depression Inventory (BDI), Modified Fatigue Impact Scale and PROMIS-Self-Efficacy, Montreal Cognitive Assessment, Rey-Osterrieth Complex Figure Test (RCFT), Benton Visual Recognition Test (BVRT), Navon Test, Visual Search, and Stop Signal Task. Eye movements were recorded during the BVRT. Resting-state functional MRI (rs-fMRI) was also performed to assess functional connectivity (FC) changes within the dorsal attention (DAN), executive control (ECN), fronto-occipital (FOC), salience (SAL), primary and secondary visual (V1, V2) brain networks. We also tested fourteen age-matched healthy controls at baseline. Results At baseline, PD patients showed abnormal visual-cognitive functions and eye movements. Analyses of rs-fMRI showed increased functional connectivity within DAN and ECN in patients compared to controls. Following art therapy, performance improved on Navon test, eye tracking, and UPDRS scores. Rs-fMRI analysis revealed significantly increased FC levels in brain regions within V1 and V2 networks. Interpretation Art therapy improves overall visual-cognitive skills and visual exploration strategies as well as general motor function in patients with PD. The changes in brain connectivity highlight a functional reorganization of visual networks

    A "kissing lesion": In-vivo 7T evidence of meningeal inflammation in early multiple sclerosis

    Get PDF
    BACKGROUND: The role of cortical lesions (CLs) in disease progression and clinical deficits is increasingly recognized in multiple sclerosis (MS); however the origin of CLs in MS still remains unclear. OBJECTIVE: Here, we report a para-sulcal CL detected two years after diagnosis in a relapsing-remitting MS (RRMS) patient without manifestation of clinical deficit. METHODS: Ultra-high field (7T) MR imaging using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE) sequence was performed. RESULTS: A para-sulcal CL was detected which showed hypointense rim and iso- to hyperintense core. This was detected in the proximity of the leptomeninges in the left precentral gyrus extending to the adjacent postcentral gyrus. CONCLUSION: This finding indicates that inflammatory infiltration into the cortex through the meninges underlies cortical pathology already in the early stage of disease and in mild disease course

    EEG-Based Mapping of Resting-State Functional Brain Networks in Patients with Parkinson’s Disease

    Get PDF
    (1) Background: Directed functional connectivity (DFC) alterations within brain networks are described using fMRI. EEG has been scarcely used. We aimed to explore changes in DFC in the sensory-motor network (SMN), ventral-attention network (VAN), dorsal-attention network (DAN), and central-executive network (CEN) using an EEG-based mapping between PD patients and healthy controls (HCs). (2) Methods: Four-minutes resting EEG was recorded from 29 PD patients and 28 HCs. Network’s hubs were defined using fMRI-based binary masks and their electrical activity was calculated using the LORETA. DFC between each network’s hub-pairs was calculated for theta, alpha and beta bands using temporal partial directed coherence (tPDC). (3) Results: tPDCs percent was lower in the CEN and DAN in PD patients compared to HCs, while no differences were observed in the SMN and VAN (group*network: F = 5.943, p < 0.001) in all bands (group*band: F = 0.914, p = 0.401). However, in the VAN, PD patients showed greater tPDCs strength compared to HCs (p < 0.001). (4) Conclusions: Our results demonstrated reduced connectivity in the CEN and DAN, and increased connectivity in the VAN in PD patients. These results indicate a complex pattern of DFC alteration within major brain networks, reflecting the co-occurrence of impairment and compensatory mechanisms processes taking place in PD
    corecore