16 research outputs found

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Microbial Consortia, a Viable Alternative for Cleanup of Contaminated Soils

    No full text
    The growth population and anthropogenic activity are constantly threatening the environment caused by the accumulation of different kinds of pollutants in the biosphere, especially in soils and sediments. Co-contaminated of environment with toxic organic and inorganic substance is often actually. For the remediation of soils contaminated with mainly petroleum, pesticide and heavy metals, several physical or chemical techniques have been developed inadequately. Inside the technologies "eco-friendly remediation", the bioremediation have emerged as an option using natural biological activity. Bioremediation are methods where microorganisms degrade one or various pollutants to non-toxic compounds, so working individually or coordinately inside a microbial consortium. A microbial consortium is the natural association of two or more microbial populations of different species, which act together in a complex system. The success of a bioremediation process with pure cultures is very low and restricted. Therefore, use of a microbial consortium appears to be more feasible and reliable. The chapter aims to review of the techniques for the elimination or degradation of pollutants using microbial consortia and highlight the importance of microbial consortia assessment. Also afford a discussion on the application of these techniques to the development of strategies and remediation policies.Fil: Villegas, Liliana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Rodriguez, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Amoroso, Maria Julia del R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation

    Get PDF
    Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The TH17 lineage of T helper (TH) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A)1 and plasticity (they can start expressing cytokines typical of other lineages)1,2 upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion TH17 cells ex vivo during immune responses. Thus, it is unknown whether TH17 cell plasticity merely reflects change in expression of a few cytokines, or if TH17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation3,4. Furthermore, although TH17 cell instability/plasticity has been associated with pathogenicity1,2,5, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic TH17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track TH17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of TH17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and postconversion TH17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, TH17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that TH17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases

    Biological physics in México

    No full text
    corecore