17 research outputs found

    Small airway disease associated with Sjögren’s syndrome: Clinico-pathological correlations

    Get PDF
    SummaryBackgroundRelationships among clinical, physiological, imaging and pathological findings of small airway disease associated with Sjögren’s syndrome have remained unclear.Subjects and methods: We retrospectively studied 14 patients who underwent surgical lung biopsy and who were diagnosed with small airway disease associated with primary or secondary Sjögren’s syndrome. We compared clinical, bronchoalveolar lavage, physiological, imaging and pathological findings between primary and secondary Sjögren’s syndrome. We scored HRCT and pathological abnormalities and investigated correlations among physiological, HRCT and pathological data, changes in physiological parameters and in HRCT scores after two years of treatment, as well as correlations between these values and pathological scores.ResultsBronchoalveolar lavage fluid, physiological, imaging and pathological findings of the airways did not significantly differ between primary and secondary Sjögren’s syndrome. Air trapping on HRCT negatively correlated with MEF50 and MEF25. Although lymphoid cell infiltration and peribronchiolar fibrosis were the most common pathologies, constrictive change scores correlated negatively with MEF50 and MEF25, positively with air trapping scores and negatively with improvements after therapy in MEF50, MEF25 and air trapping.ConclusionsConstrictive change was the most significant determinant of physiological and imaging presentations and of changes in these factors after therapy for small airway disease associated with Sjögren’s syndrome

    Changes in aromatase (CYP19) gene promoter usage in non-small cell lung cancer

    Get PDF
    金沢大学医薬保健研究域医学系In humans, aromatase (CYP19) gene expression is regulated via alternative promoters. Activation of each promoter gives rise to a CYP19 mRNA species with a unique 5′-untranslated region. Inhibition of aromatase has been reported to downregulate lung tumor growth. The genetic basis for CYP19 gene expression and aromatase activity in lung cancer remains poorly understood. We analyzed tissues from 15 patients with non-small cell lung cancer (NSCLC) to evaluate CYP19 promoter usage and promoter-specific aromatase mRNA levels in NSCLC tumor tissues and adjacent non-malignant tissues. CYP19 promoter usage was determined by multiplex RT-PCR and aromatase mRNA levels were measured with real-time RT-PCR. In non-malignant tissues, aromatase mRNA was primarily derived from activation of CYP19 promoter I.4. Although promoter I.4 usage was also dominant in tumor tissues, I.4 activation was significantly lower compared with adjacent non-malignant tissues. Activity of promoters I.3, I.1 and I.7 was significantly higher in tumor tissues compared with non-malignant tissues. In 4 of 15 cases of non-small cell lung cancer, switching from CYP19 promoter I.4 to the alternative promoters II, I.1 or I.7 was observed. In 9 cases, there were significantly higher levels of aromatase mRNA in lung tumor tissues compared with adjacent non-malignant tissues. These findings suggest aberrant activation of alternative CYP19 promoters that may lead to upregulation of local aromatase expression in some cases of NSCLC. Further studies are needed to examine the impact of alternative CYP19 promoter usage on local estrogen levels and lung tumor growth. © 2011 Elsevier Ireland Ltd. All rights reserved

    Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia

    Get PDF
    Purpose Individual clinical courses of idiopathic interstitial pneumonia (IIP) are variable and difficult to predict because the pathology and disease activity are contingent, and chest computed tomography (CT) provides little information about disease activity. In this study, we applied dual-time-point [18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET), commonly used for diagnosis of malignant tumors, to the differential diagnosis and prediction of disease progression in IIP patients. Methods Fifty patients with IIP, including idiopathic pulmonary fibrosis (IPF, n=21), nonspecific interstitial pneumonia (NSIP, n=18), and cryptogenic organizing pneumonia (COP, n=11), underwent 18F-FDG PET examinations at two time points: Scan 1 at 60 min (early imaging) and Scan 2 at 180 min (delayed imaging) after 18F-FDG injection. The standardized uptake values (SUV) at the two points and the retention index (RI-SUV) calculated from them were evaluated and compared with chest CT findings, disease progression, and disease types. To evaluate short term disease progression, all patients were examined pulmonary function test every 3 months for 1 year after 18F-FDG PET scanning. Results The early SUV for COP (2.47±0.74) was significantly higher than that for IPF (0.99±0.29, P=0.0002) or NSIP (1.22±0.44, P=0.0025). When an early SUV cut-off value of 1.5 and greater was used to distinguish COP from IPF and NSIP, the sensitivity, specificity, and accuracy were 90.9%, 94.3%, and 93.5%, respectively. The RI-SUV for IPF and NSIP lesions was significantly greater in patients with deteriorated pulmonary function after 1-year of follow-up (progressive group, 13.0±8.9%) than in cases without deterioration during the 1-year observation period (stable group, -16.8±5.9%, P<0.0001). However, the early SUV for all IIP types provided no additional information of disease progression. When an RI-SUV cut-off value of 0% and greater was used to distinguish progressive IIPs from stable IIPs, the sensitivity, specificity, and accuracy were 95.5%, 100%, and 97.8%, respectively. Conclusion Early-SUV and RI-SUV obtained from dual-time point 18F-FDG PET are useful parameter for the differential diagnosis and prediction of disease progression in patients with IIP

    Prospective Study of Gefitinib Readministration After Chemotherapy in Patients With Advanced Non-Small-Cell Lung Cancer Who Previously Responded to Gefitinib

    Get PDF
    The present study was designed to prospectively evaluate the clinical efficacy of gefitinib readministration in patients with advanced non-small cell lung cancer who responded well to initial gefitinib, followed by cytotoxic chemotherapy. Twenty subjects were enrolled, and 3 and 6 patients achieved partial response and stable disease, respectively. These findings provide valuable information for the management of previous gefitinib responders. Introduction: Salvage treatment for acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitor in patients with non-small-cell lung cancer is a matter of clinical concern. Several retrospective reports have indicated the usefulness of epidermal growth factor receptor tyrosine kinase inhibitor readministration; however, there have been few prospective studies. Materials and Methods: This study was designed to prospectively evaluate the clinical efficacy of gefitinib readministration in patients with advanced or metastatic non-small-cell lung cancer who responded well to initial gefitinib treatment. The subjects received at least 1 regimen of cytotoxic chemotherapy after progressive disease with the initial gefitinib therapy. Gefitinib administration (250 mg/d, orally) was started after progressive disease with the previous chemotherapeutic regimen. The primary endpoint in the present study was the response rate. Results: Twenty patients were enrolled between April 2007 and May 2011. Three patients achieved partial response, and 6 showed stable disease. Thus, the overall response rate and disease control rate of gefitinib readministration were 15% (95% Cl, 3.21-37.9) and 45% (95% Cl, 23.1-68.5), respectively. Median progression-free survival and overall survival from the start of gefitinib readministration were 2.0 months (95% Cl, 0.9-3.1 months) and 12.0 months (95% Cl, 8.0-16.0 months), respectively. Conclusion: These results suggest that gefitinib readministration may be an option, albeit with a low response rate and short progression-free survival, for patients who responded well to initial gefitinib followed by systemic chemotherapy. These findings provide valuable information for the management of previous gefitinib responders.ArticleCLINICAL LUNG CANCER. 13(6):458-463 (2012)journal articl

    FDG positron emission tomography imaging of drug-induced pneumonitis

    No full text
    Several studies have reported the findings of FDG-PET in benign lung disease with diffuse pulmonary injury, but the characteristics and effectiveness of FDG-PET imaging for interstitial pneumonitis have not been substantiated. We report two cases of drug-induced pneumonitis in two patients treated for breast cancer who were diagnosed by FDG-PET examination. Both of these cases showed diffuse interstitial infiltration in the bilateral lungs on CT, but the degree of FDG accumulation was different. It is probable that the degree of FDG accumulation reflected the activity of the drug-induced pneumonitis. The present cases show very interesting FDG-PET imaging findings of diffuse lung disease
    corecore