533 research outputs found
A geometric approach to three-dimensional hipped bipedal robotic walking
This paper presents a control law that results in stable walking for a three-dimensional bipedal robot with a hip. To obtain this control law, we utilize techniques from geometric reduction, and specifically a variant of Routhian reduction termed functional Routhian reduction, to effectively decouple the dynamics of the three-dimensional biped into its sagittal and lateral components. Motivated by the decoupling afforded by functional Routhian reduction, the control law we present is obtained by combining three separate control laws: the first shapes the potential energy of the sagittal dynamics of the biped to obtain stable walking gaits when it is constrained to the sagittal plane, the second shapes the total energy of the walker so that functional Routhian reduction can be applied to decoupling the dynamics of the walker for certain initial conditions, and the third utilizes an output zeroing controller to stabilize to the surface defining these initial conditions. We numerically verify that this method results in stable walking, and we discuss certain attributes of this walking gait
Beam masking to reduce cyclic error in beam launcher of interferometer
Embodiments of the present invention are directed to reducing cyclic error in the beam launcher of an interferometer. In one embodiment, an interferometry apparatus comprises a reference beam directed along a reference path, and a measurement beam spatially separated from the reference beam and being directed along a measurement path contacting a measurement object. The reference beam and the measurement beam have a single frequency. At least a portion of the reference beam and at least a portion of the measurement beam overlapping along a common path. One or more masks are disposed in the common path or in the reference path and the measurement path to spatially isolate the reference beam and the measurement beam from one another
Obervational Model for Microarcsecond Astrometry with the Space Interferometry Mission
The Space Interferometry Mission (SIM) is a space-based long-baseline optical
interferometer for precision astrometry. One of the primary objectives of the
SIM instrument is to accurately determine the directions to a grid of stars,
together with their proper motions and parallaxes, improving a priori knowledge
by nearly three orders of magnitude. The basic astrometric observable of the
instrument is the pathlength delay, a measurement made by a combination of
internal metrology measurements that determine the distance the starlight
travels through the two arms of the interferometer and a measurement of the
white light stellar fringe to find the point of equal pathlength. Because this
operation requires a non--negligible integration time to accurately measure the
stellar fringe position, the interferometer baseline vector is not stationary
over this time period, as its absolute length and orientation are
time--varying. This conflicts with the consistency condition necessary for
extracting the astrometric parameters which requires a stationary baseline
vector. This paper addresses how the time-varying baseline is ``regularized''
so that it may act as a single baseline vector for multiple stars, and thereby
establishing the fundamental operation of the instrument.Comment: 24 pages, 6 figure
Safe, Remote-Access Swarm Robotics Research on the Robotarium
This paper describes the development of the Robotarium -- a remotely
accessible, multi-robot research facility. The impetus behind the Robotarium is
that multi-robot testbeds constitute an integral and essential part of the
multi-agent research cycle, yet they are expensive, complex, and time-consuming
to develop, operate, and maintain. These resource constraints, in turn, limit
access for large groups of researchers and students, which is what the
Robotarium is remedying by providing users with remote access to a
state-of-the-art multi-robot test facility. This paper details the design and
operation of the Robotarium as well as connects these to the particular
considerations one must take when making complex hardware remotely accessible.
In particular, safety must be built in already at the design phase without
overly constraining which coordinated control programs the users can upload and
execute, which calls for minimally invasive safety routines with provable
performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference
Mitochondrial decay in aging
AbstractSeveral mitochondrial functions decline with age. The contributing factors include, the intrinsic rate of proton leakage across the inner mitochondrial membrane (a correlate of oxidant formation), decreased membrane fluidity, and decreased levels and function of cardiolipin, which supports the function of many of the proteins of the inner mitochondrial membrane. Oxidants generated by mitochondria appear to be the major source of the oxidative lesions that accumulate with age. Evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging
Fermentation of Cottonseed and Other Feedstuffs in Cattle Rumen Fluid
Bovine rumen fluid was fermented anaerobically over 48 h with cottonseed, corn, alfalfa, or a mixture of these substrates in anaerobic mineral buffer. Samples taken at different incubation times were derivatized with n-butanol and subjected to gas chromatography and mass spectroscopy. No unusual fermentation end-products from the cottonseed substrate were detected. Cottonseed supported rumen fermentation at levels comparable to those of the other substrates. Major components were usually found in the decreasing order of acetate, propionate, butyrate, and valerate, although acetate and propionate concentrations decreased late in the alfalfa and mixed-feed fermentations, eventually allowing butyrate concentrations to exceed those of propionate. As expected, lactate was produced in high concentrations when corn was fermented. The minor components 2-methylpropionate, 2- and 3-methylbutyrate, phenylacetate, phenylpropionate, and caproate also accumulated, with their relative concentrations varying with the substrate. Succinate was produced in substantial amounts only when corn and alfalfa were fermented; it did not accumulate when cottonseed was the substrate. Samples containing cottonseed were derivatized and subjected to reversed-phase high-performance liquid chromatography, revealing that gossypol concentrations did not change during fermentation
A Scalable Safety Critical Control Framework for Nonlinear Systems
There are two main approaches to safety-critical control. The first one relies on computation of control invariant sets and is presented in the first part of this work. The second approach draws from the topic of optimal control and relies on the ability to realize Model-Predictive-Controllers online to guarantee the safety of a system. In the second approach, safety is ensured at a planning stage by solving the control problem subject for some explicitly defined constraints on the state and control input. Both approaches have distinct advantages but also major drawbacks that hinder their practical effectiveness, namely scalability for the first one and computational complexity for the second. We therefore present an approach that draws from the advantages of both approaches to deliver efficient and scalable methods of ensuring safety for nonlinear dynamical systems. In particular, we show that identifying a backup control law that stabilizes the system is in fact sufficient to exploit some of the set-invariance conditions presented in the first part of this work. Indeed, one only needs to be able to numerically integrate the closed-loop dynamics of the system over a finite horizon under this backup law to compute all the information necessary for evaluating the regulation map and enforcing safety. The effect of relaxing the stabilization requirements of the backup law is also studied, and weaker but more practical safety guarantees are brought forward. We then explore the relationship between the optimality of the backup law and how conservative the resulting safety filter is. Finally, methods of selecting a safe input with varying levels of trade-off between conservatism and computational complexity are proposed and illustrated on multiple robotic systems, namely: a two-wheeled inverted pendulum (Segway), an industrial manipulator, a quadrotor, and a lower body exoskeleton
The Robotarium: A remotely accessible swarm robotics research testbed
This paper describes the Robotarium - a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-robot research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium and discusses the considerations one must take when making complex hardware remotely accessible. In particular, safety must be built into the system already at the design phase without overly constraining what coordinated control programs users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees
- …