4,136 research outputs found

    Constraining Primordial Non-Gaussianity With the Abundance of High Redshift Clusters

    Get PDF
    We show how observations of the evolution of the galaxy cluster number abundance can be used to constrain primordial non-Gaussianity in the universe. We carry out a maximum likelihood analysis incorporating a number of current datasets and accounting for a wide range of sources of systematic error. Under the assumption of Gaussianity, the current data prefer a universe with matter density Ωm0.3\Omega_m\simeq 0.3 and are inconsistent with Ωm=1\Omega_m=1 at the 2σ2\sigma level. If we assume Ωm=1\Omega_m=1, the predicted degree of cluster evolution is consistent with the data for non-Gaussian models where the primordial fluctuations have at least two times as many peaks of height 3σ3\sigma or more as a Gaussian distribution does. These results are robust to almost all sources of systematic error considered: in particular, the Ωm=1\Omega_m=1 Gaussian case can only be reconciled with the data if a number of systematic effects conspire to modify the analysis in the right direction. Given an independent measurement of Ωm\Omega_m, the techniques described here represent a powerful tool with which to constrain non-Gaussianity in the primordial universe, independent of specific details of the non-Gaussian physics. We discuss the prospects and strategies for improving the constraints with future observations.Comment: Minor revisions to match published ApJ version, 14 pages emulateap

    Scaling solutions in general non-minimal coupling theories

    Get PDF
    A class of generalized non-minimal coupling theories is investigated, in search of scaling attractors able to provide an accelerated expansion at the present time. Solutions are found in the strong coupling regime and when the coupling function and the potential verify a simple relation. In such cases, which include power law and exponential functions, the dynamics is independent of the exact form of the coupling and the potential. The constraint from the time variability of GG, however, limits the fraction of energy in the scalar field to less than 4% of the total energy density, and excludes accelerated solutions at the present.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.

    Testing for double inflation with WMAP

    Get PDF
    With the WMAP data we can now begin to test realistic models of inflation involving multiple scalar fields. These naturally lead to correlated adiabatic and isocurvature (entropy) perturbations with a running spectral index. We present the first full (9 parameter) likelihood analysis of double inflation with WMAP data and find that despite the extra freedom, supersymmetric hybrid potentials are strongly constrained with less than 7% correlated isocurvature component allowed when standard priors are imposed on the cosomological parameters. As a result we also find that Akaike & Bayesian model selection criteria rather strongly prefer single-field inflation, just as equivalent analysis prefers a cosmological constant over dynamical dark energy in the late universe. It appears that simplicity is the best guide to our universe.Comment: 7 pages, 6 figure

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio

    Cosmological perturbations from varying masses and couplings

    Full text link
    We study the evolution of perturbations during the domination and decay of a massive particle species whose mass and decay rate are allowed to depend on the expectation value of a light scalar field. We specialize in the case where the light field is slow-rolling, showing that during a phase of inhomogeneous mass-domination and decay the isocurvature perturbation of the light field is converted into a curvature perturbation with an efficiency which is nine times larger than when the mass is fixed. We derive a condition on the annihilation cross section and on the decay rate for the domination of the massive particles and we show that standard model particles cannot dominate the universe before nucleosynthesis. We also compare this mechanism with the curvaton model. Finally, observational signatures are discussed. A cold dark matter isocurvature mode can be generated if the dark matter is produced out of equilibrium by both the inflaton and the massive particle species decay. Non-Gaussianities are present: they are chi-square deviations. However, they might be too small to be observable.Comment: 21 pages, 4 figures, published versio

    Dark Matter and Dark Energy via Non-Perturbative (Flavour) Vacua

    Full text link
    A non-perturbative field theoretical approach to flavour physics (Blasone-Vitiello formalism) has been shown to imply a highly non-trivial vacuum state. In a previous work, we implemented the approach on a simple supersymmetric model (free Wess-Zumino), with flavour mixing, which was regarded as a model for free neutrinos and sneutrinos. The resulting effective vacuum (called "flavour vacuum") was found to be characterized by a strong SUSY breaking. In this paper we explore the phenomenology of the model and we argue that the flavour vacuum is a consistent source for both Dark Energy (thanks to the bosonic sector of the model) and Dark Matter (via the fermionic one). Quite remarkably, besides the parameters connected with neutrino physics, in this model no other parameters have been introduced, possibly leading to a predictive theory of Dark Energy/Matter. Despite its oversimplification, such a toy model already seems capable to shed some light on the observed energy hierarchy between neutrino physics, Dark Energy and Dark Matter. Furthermore, we move a step forth in the construction of a more realistic theory, by presenting a novel approach for calculating relevant quantities and hence extending some results to interactive theories, in a completely non-perturbative way.Comment: 14 pages, 2 figure

    Cosmological dynamics in six-order gravity

    Full text link
    We consider cosmological dynamics in generalized modified gravity theory with the RRR\Box R term added to the action of the form R+RNR+R^N. Influence of RRR \Box R term to the known solutions of modified gravity is described. We show that in particular case of N=3N=3 these two non-Einstein terms are equally important on power-law solutions. These solutions and their stability have been studied using dynamical system approach. Some results for the case of N3N \ne 3 (including stability of de Sitter solution in the theory under investigation) have been found using other methods

    Cosmological observations in scalar-tensor quintessence

    Full text link
    The framework for considering the astronomical and cosmological observations in the context of scalar-tensor quintessence in which the quintessence field also accounts for a time dependence of the gravitational constant is developed. The constraints arising from nucleosynthesis, the variation of the constant, and the post-Newtonian measurements are taken into account. A simple model of supernovae is presented in order to extract the dependence of their light curves with the gravitational constant; this implies a correction when fitting the luminosity distance. The properties of perturbations as well as CMB anisotropies are also investigated.Comment: 26 pages, 22 figures, to appear in PR

    Carotid artery dissections from TCAR as reported by the Food and Drug Administration

    Get PDF
    BACKGROUND: Transcarotid artery revascularization (TCAR) is hybrid procedure that allows carotid stenting using direct surgical access of the carotid artery to restore blood flow through the carotid artery. It has shown the lowest perioperative stroke rate when compared with any prospective trial of transfemoral carotid artery stenting. However, intraoperative injuries related to the procedure and its management are not well characterized. We anticipate that this analysis will add qualitative insight in further characterizing adverse outcomes of this novel technology. METHODS: The FDA maintains a database called the MAUDE (Manufacturer and User Facility Device Experience) for surveillance of all medical devices approved for use. This database was queried for all cases associated with Silk Road Medical’s ENROUTE Transcarotid Neuroprotection System from September 2016 to October 2020.. Case narratives related to patient injuries were individually analyzed to determine type (carotid artery dissection) and time of injury (intraoperative, recovery, post-discharge follow- up). Carotid artery dissection (CD) reporting was further analyzed for associated procedural event at the time of injury, number of access attempts to CD repair, and type of CD repair. RESUTS: Of the 115 unique incidents in the database, there were 58 CDs. Most were identified intraoperatively (n=55), while 3 were incidentally identified postoperatively. Overall, sheath placement was the most common procedural event attributed to CD (n=34). There was adequate narrative information about CD repair in 54 patients where 52 of them were performed intraoperatively. There were total of 28 endovascular repair and 24 open surgical repairs of CDs from TCAR procedure. There was no significant difference in rate of endovascular and open surgical repair of CDs that did not need additional access attempts. However, rate of open surgical repair was significantly higher in CDs with persistent failure to engage the true lumen in 2 or more additional access attempts. Total of 4 strokes were associated with CD. Two occurred during recovery from TCAR admission where one was not intervened per physician’s discretion despite evidence of dissection during the procedure. The other was associated with a fall from a hypotensive event 7 hours after an endovascular CD repair. One incident of stroke occurred intraoperatively during a conversion to CEA as a result of CD. One incident of stroke occurred 4 days after TCAR procedure in which a CD was identified during the stroke evaluation Conclusion: Carotid artery dissection is the most common injury related to TCAR as reported on MAUDE database. Most common procedural event associated CD was sheath placement. Rate of open surgical repair was significantly higher than endovascular repair in dissections with persistent failure to engage true lumen despite additional access attempts. This should add to qualitative insight among vascular surgery community regarding intraoperative management of carotid artery dissections from a TCAR procedure.https://scholarscompass.vcu.edu/gradposters/1144/thumbnail.jp
    corecore