7 research outputs found

    Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development.

    Get PDF
    RationaleMutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type-specific requirement for TBX20 in early myocardial development remains to be explored.ObjectiveHere, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development.Methods and resultsAblation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner.ConclusionsMyocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer

    Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5

    Get PDF
    While coding variants often have pleiotropic effects across multiple tissues, non-coding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we dissected the genetic and functional architecture of a genomic region within the FTO gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting IRX3 and IRX5 from megabase distances. We demonstrate that these enhancers impact gene expression in multiple tissues, including adipose and brain, and impart regulatory effects during a restricted temporal window. Our data indicate that the genetic architecture of disease-associated loci may involve extensive pleiotropy, allelic heterogeneity, shared allelic effects across tissues, and temporally-restricted effects

    Widening global variability in grassland biomass since the 1980s

    Get PDF
    Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to −34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating

    TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation

    Get PDF
    Reactive oxygen species (ROS) are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2)/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability

    COVID-19-related acute kidney injury; incidence, risk factors and outcomes in a large UK cohort

    No full text
    Abstract Background Acute kidney injury (AKI) is common among patients hospitalised with COVID-19 and associated with worse prognosis. The aim of this study was to investigate the epidemiology, risk factors and outcomes of AKI in patients with COVID-19 in a large UK tertiary centre. Methods We analysed data of consecutive adults admitted with a laboratory-confirmed diagnosis of COVID-19 across two sites of a hospital in London, UK, from 1st January to 13th May 2020. Results Of the 1248 inpatients included, 487 (39%) experienced AKI (51% stage 1, 13% stage 2, and 36% stage 3). The weekly AKI incidence rate gradually increased to peak at week 5 (3.12 cases/100 patient-days), before reducing to its nadir (0.83 cases/100 patient-days) at the end the study period (week 10). Among AKI survivors, 84.0% had recovered renal function to pre-admission levels before discharge and none required on-going renal replacement therapy (RRT). Pre-existing renal impairment [odds ratio (OR) 3.05, 95%CI 2.24–4,18; p <  0.0001], and inpatient diuretic use (OR 1.79, 95%CI 1.27–2.53; p <  0.005) were independently associated with a higher risk for AKI. AKI was a strong predictor of 30-day mortality with an increasing risk across AKI stages [adjusted hazard ratio (HR) 1.59 (95%CI 1.19–2.13) for stage 1; p < 0.005, 2.71(95%CI 1.82–4.05); p < 0.001for stage 2 and 2.99 (95%CI 2.17–4.11); p < 0.001for stage 3]. One third of AKI3 survivors (30.7%), had newly established renal impairment at 3 to 6 months. Conclusions This large UK cohort demonstrated a high AKI incidence and was associated with increased mortality even at stage 1. Inpatient diuretic use was linked to a higher AKI risk. One third of survivors with AKI3 exhibited newly established renal impairment already at 3–6 months
    corecore