40 research outputs found

    Observational Properties of SNe Ia Progenitors Close to the Explosion

    Get PDF
    We determine the expected signal in various observational bands of Supernovae Ia progenitors just before the explosion by assuming the rotating Double Degenerate scenario. Our results are valid also for all the evolutionary scenarios invoking rotation as the driving mechanism of the accretion process as well as the evolution up to the explosion. We find that the observational properties depend mainly on the mass of the exploding object, even if the angular momentum evolution after the end of the mass accretion phase and before the onset of C-burning plays a non-negligible role. Just before the explosion the magnitude M_V ranges between 9 and 11 mag, while the colour (F225W-F555W) is about -1.64 mag. The photometric properties remain constant for a few decades before the explosion. During the last few months the luminosity decreases very rapidly. The corresponding decline in the optical bands varies from few hundredths up to one magnitude, the exact value depending on both the WD total mass and the braking efficiency at the end of the mass transfer. This feature is related to the exponentially increasing energy production which drives the formation of a convective core rapidly extending over a large part of the exploding object. Also a drop in the angular velocity occurs. We find that observations in the soft X band (0.5 -2 keV) may be used to check if the SNe Ia progenitors evolution up to explosion is driven by rotation and, hence, to discriminate among different progenitor scenarios.Comment: 8 pages, 6 figures, 2 tables. Accepted for the publication on MNRA

    The Influence of N14(e-,nu)C14(alpha,gamma)O18 reaction on the He-Ignition in Degenerate Physical Conditions

    Full text link
    The importance of NCO chain on the onset of the He-flash in degenerate physical conditions has been reevaluated. We find that low-mass, metal-rich (Z ≥\ge 0.001) structures climbing the Red Giant Branch do never attain the physical conditions suitable for the onset of this chain, while at lower metallicities the energy contribution provided by NCO reaction is too low to affect the onset of the central He-flash. At the same time, our evolutionary models suggest that for a Carbon-Oxygen White Dwarf of mass M_{WD}=0.6 M_sun accreting He-rich matter, directly or as a by-product of an overlying H-burning shell, at rates suitable for a dynamical He-flash, the NCO energy contribution is not able to keep hot enough the He-shell and in turn to avoid the occurrence of a strong electron degeneracy and the ensuing final explosion.Comment: 15 pages, 3 tables, 10 figure, to appear in Ap

    Carbon-Oxygen White Dwarf Accreting CO-Rich Matter. II. Self-Regulating Accretion Process up to the Explosive Stage

    Get PDF
    We investigate the effect of rotation on the evolution of double-degenerate white dwarf systems, which are possible progenitors of Type Ia supernovae. We assume that prior to merging, the two white dwarfs rotate synchronously at the orbital frequency and that in the merger process, the lighter white dwarf is transformed into a thick disk from which the more massive white dwarf initially accretes at a very high rate (~10-5 M☉ yr-1). Because of the lifting effect of rotation, the accreting white dwarf expands until the gravitational acceleration and centripetal acceleration required for binding at the surface become equal, initiating a Roche instability. The white dwarf continues to accrete matter from the disk, but at a rate that is determined by the balance between two competing processes operating in outer layers: (1) heating, expansion, and spin-up due to accretion and (2) cooling and contraction due to thermal diffusion. The balance produces an accretion rate such that the angular velocity of the white dwarf ωWD and the break-up angular velocity ωcr remain equal. Because of the deposition of angular momentum by accreted matter and the contraction of the accreting star, ωWD increases continuously until the rotational energy reaches about 14% of the gravitational binding energy; then, another instability sets in: the structure is forced to adopt an elliptical shape and emit gravitational waves. Thereafter, a balance between the rate of deposition of angular momentum by accreted matter and the rate of loss of angular momentum by gravitational waves produces a nearly constant or "plateau" accretion rate of ~4 × 10-7 M☉ yr-1. The mass of the accreting white dwarf can increase up to and beyond the Chandresekhar mass limit for nonrotating white dwarfs before carbon ignition occurs. Independent of the initial value of the accretion rate, the physical conditions suitable for carbon ignition are achieved at the center of the accreting white dwarf and, because of the high electron degeneracy, the final outcome is an event of SN Ia proportions. Our results apply to merged binary white dwarf systems which, at the onset of explosive carbon ignition, have a total mass in the range 1.4-1.5 M☉

    The formation and evolution of early-type galaxies : solid results and open questions

    Full text link
    The most recent results and some of the open key questions on the evolution of early-type galaxies are reviewed in the general cosmological context of massive galaxy formation.Comment: 8 pages, invited review at the workshop "Probing Stellar Populations out to the Distant Universe", Cefalu` (Italy), September 7 - 19, 200

    Spectral libraries and their uncertainties

    Get PDF
    Libraries of stellar spectra are fundamental tools in the study of stellar populations and in automatic determination of atmospheric parameters for large samples of observed stars. In the context of the present volume, here I give an overview of the current status of stellar spectral libraries from the perspective of stellar population modeling: what we have currently available, how good they are, and where we need further improvement

    Advances on GRB as cosmological tools

    Full text link
    Several interesting correlations among Gamma Ray Bursts (GRB) prompt and afterglow properties have been found in the recent years. Some of these correlations have been proposed also to standardize GRB energetics to use them as standard candles in constraining the expansion history of the universe up to z>6. However, given the still unexplained nature of most of these correlations, only the less scattered correlations can be used for constraining the cosmological parameters. The updated E_peak-E_gamma correlation is presented. Caveats of alternative methods of standardizing GRB energetics are discussed.Comment: 8 parges, AIP conf. proc. "Probing stellar populations out to the distant universe, Cefalu' 2008" Vol. 1111, pp. 579-58

    Unsolved Problems about Supernovae

    Get PDF
    A number of unsolved problems and open questions about the nature and the properties of supernovae are identified and briefly discussed. Some suggestions and directions toward possible solutions are also considered.Comment: 7 pages, Proceedings of 'Probing Stellar Populations out to the Distant Universe', Cefalu, Italy, Sep 7-19, 2008, AIP Conf. Proc. Serie

    Early metal enrichment in high-redshift quasars

    Full text link
    Quasars are powerful systems whose spectrum is rich of metal features that allow us to investigate the chemical evolution of galaxies at very high redshift, even close to the reionization epoch. I review the main observational constraints on the metallicity of quasars host galaxies at high redshift and discuss the implications and issues for models of galaxy evolution in the early universe.Comment: 8 pages, invited review at the workshop "Probing Stellar Populations out to the Distant Universe

    Hydrogen-Accreting Carbon-Oxygen White Dwarfs of Low Mass: Thermal and Chemical Behavior of Burning Shells

    Get PDF
    Numerical experiments have been performed to investigate the thermal behavior of a cooled down white dwarf of initial mass M_{\rm WD} = 0.516 M_{\sun} which accretes hydrogen-rich matter with Z = 0.02 at the rate M˙=10−8\dot{M}=10^{-8} \msun \yrm1, typical for a recurrent hydrogen shell flash regime. The evolution of the main physical quantities of a model during a pulse cycle is examined in detail. From selected models in the mass range MWD=0.52÷0.68M_{\rm WD} = 0.52\div 0.68 \msunend, we derive the borders in the MWDM_{\rm WD} - M˙\dot{M} plane of the steady state accretion regime when hydrogen is burned at a constant rate as rapidly as it is accreted. The physical properties during a hydrogen shell flash in white dwarfs accreting hydrogen-rich matter with metallicities Z = 0.001 and Z = 0.0001 are also studied. For a fixed accretion rate, a decrease in the metallicity of the accreted matter leads to an increase in the thickness of the hydrogen-rich layer at outburst and a decrease in the hydrogen-burning shell efficiency. In the MWDM_{\rm WD}-M˙\dot{M} plane, the borders of the steady state accretion band are critically dependent on the metallicity of the accreted matter: on decreasing the metallicity, the band is shifted to lower accretion rates and its width in M˙\dot{M} is reduced.Comment: 31 pages and 10 Postscript figures; Accepted for publication on Ap
    corecore