8 research outputs found

    Massless Rotating Fermions Inside a Cylinder

    Get PDF
    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, while the spectral boundary condition is nonlocal

    Dirac Fermions on an Anti-de Sitter Background

    Get PDF
    Using an exact expression for the bi-spinor of parallel transport, we construct the Feynman propagator for Dirac fermions in the vacuum state on anti-de Sitter space-time. We compute the vacuum expectation value of the stress-energy tensor by removing coincidence-limit divergences using the Hadamard method. We then use the vacuum Feynman propagator to compute thermal expectation values at finite temperature. We end with a discussion of rigidly rotating thermal states

    Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    Get PDF
    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one

    Rotating fermions inside a cylindrical boundary

    Get PDF
    We study a quantum fermion field inside a cylinder in Minkowski space-time. On the surface of the cylinder, the fermion field satisfies either spectral or MIT bag boundary conditions. We define rigidly rotating quantum states in both cases, assuming that the radius of the cylinder is sufficiently small that the speed-of-light surface is excluded from the space-time. With this assumption, we calculate rigidly-rotating thermal expectation values of the fermion condensate, neutrino charge current and stress-energy tensor relative to the bounded vacuum state. These rigidly-rotating thermal expectation values are finite everywhere inside and on the surface of the cylinder and their detailed properties depend on the choice of boundary conditions. We also compute the Casimir divergence of the expectation values of these quantities in the bounded vacuum state relative to the unbounded Minkowski vacuum. We find that the rate of divergence of the Casimir expectation values depends on the conditions imposed on the boundary

    Analysis of scalar and fermion quantum field theory on anti-de Sitter spacetime

    Get PDF
    We study vacuum and thermal expectation values of quantum scalar and fermion fields on anti-de Sitter space-time. Anti-de Sitter space-time is maximally symmetric and this enables expressions for the scalar and fermion vacuum Feynman Green's functions to be derived in closed form. We employ Hadamard renormalization to find the vacuum expectation values. The thermal Feynman Green's functions are constructed from the vacuum Feynman Green's functions using the imaginary time periodicity/anti-periodicity property for scalars/fermions. Focussing on massless fields with either conformal or minimal coupling to the space-time curvature (these two cases being the same for fermions) we compute the differences between the thermal and vacuum expectation values. We compare the resulting energy densities, pressures and pressure deviators with the corresponding classical quantities calculated using relativistic kinetic theory

    Vortical effects for free fermions on anti-de Sitter space-time

    Get PDF
    Here, we study a quantum fermion field in rigid rotation at finite temperature on anti-de Sitter space. We assume that the rotation rate Ω is smaller than the inverse radius of curvature ℓ−1, so that there is no speed of light surface and the static (maximally-symmetric) and rotating vacua coincide. This assumption enables us to follow a geometric approach employing a closed-form expression for the vacuum two-point function, which can then be used to compute thermal expectation values (t.e.v.s). In the high temperature regime, we find a perfect analogy with known results on Minkowski space-time, uncovering curvature effects in the form of extra terms involving the Ricci scalar R. The axial vortical effect is validated and the axial flux through two-dimensional slices is found to escape to infinity for massless fermions, while for massive fermions, it is completely converted into the pseudoscalar density −iψ¯¯γ5ψ. Finally, we discuss volumetric properties such as the total scalar condensate and the total energy within the space-time and show that they diverge as [1−ℓ2Ω2]−1 in the limit Ω→ℓ−1

    Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach

    Get PDF
    We develop and implement a novel finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write down the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focussing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of such geometries. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries

    Exact solutions in quantum field theory under rotation

    No full text
    We discuss the construction and properties of rigidly-rotating states for free scalar and fermion fields in quantum field theory. On unbounded Minkowski space-time, we explain why such states do not exist for scalars. For the Dirac field, we are able to construct rotating vacuum and thermal states, for which expectation values can be computed exactly in the massless case. We compare these quantum expectation values with the corresponding quantities derived in relativistic kinetic theory
    corecore