117 research outputs found

    A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation

    Get PDF
    Centrioles are the major constituents of the animal centrosome, in which Plk4 kinase serves as a master regulator of the duplication cycle. Many eukaryotes also contain numerous peripheral particles known as centriolar satellites. While centriolar satellites aid centriole assembly and primary cilium formation, it is unknown whether Plk4 plays any regulatory roles in centriolar satellite integrity. Here we show that Plk4 is a critical determinant of centriolar satellite organisation. Plk4 depletion leads to the dispersion of centriolar satellites and perturbed ciliogenesis. Plk4 interacts with the satellite component PCM1, and its kinase activity is required for phosphorylation of the conserved S372. The nonphosphorylatable PCM1 mutant recapitulates phenotypes of Plk4 depletion, while the phosphomimetic mutant partially rescues the dispersed centriolar satellite patterns and ciliogenesis in cells depleted of PCM1. We show that S372 phosphorylation occurs during the G1 phase of the cell cycle and is important for PCM1 dimerisation and interaction with other satellite components. Our findings reveal that Plk4 is required for centriolar satellite function, which may underlie the ciliogenesis defects caused by Plk4 dysfunction

    Casein kinase 1γ acts as a molecular switch for cell polarization through phosphorylation of the polarity factor Tea1 in fission yeast

    Get PDF
    Fission yeast undergoes growth polarity transition from monopolar to bipolar during G2 phase, designated NETO (New End Take Off). It is known that NETO onset involves two prerequisites, the completion of DNA replication and attainment of a certain cell size. However, the molecular mechanism remains unexplored. Here, we show that casein kinase 1γ, Cki3 is a critical determinant of NETO onset. Not only did cki3∆ cells undergo NETO during G1‐ or S‐phase, but they also displayed premature NETO under unperturbed conditions with a smaller cell size, leading to cell integrity defects. Cki3 interacted with the polarity factor Tea1, of which phosphorylation was dependent on Cki3 kinase activity. GFP nanotrap of Tea1 by Cki3 led to Tea1 hyperphosphorylation with monopolar growth, whereas the same entrapment by kinase‐dead Cki3 resulted in converse bipolar growth. Intriguingly, the Tea1 interactor Tea4 was dissociated from Tea1 by Cki3 entrapment. Mass spectrometry identified four phosphoserine residues within Tea1 that were hypophosphorylated in cki3∆ cells. Phosphomimetic Tea1 mutants showed compromised binding to Tea4 and NETO defects, indicating that these serine residues are critical for protein–protein interaction and NETO onset. Our findings provide significant insight into the mechanism by which cell polarization is regulated in a spatiotemporal manner.T.K. was the recipient of a JSPS fellowship (PD) and was partly supported by ‘Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation’ from JSPS. This work was supported by Cancer Research UK (T.T. and A.P.S) and the Ministry of Education, Culture, Sports, Science and Technology (D.H.)

    ER-export and ARFRP1/AP-1-dependent delivery of SARS-CoV-2 Envelope to lysosomes controls late stages of viral replication

    Get PDF
    The β-coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the global Covid-19 pandemic. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release and pathogenesis. We developed a non-disruptive tagging strategy for SARS-CoV-2 E and find that at steady-state, it localises to the Golgi and to lysosomes. We identify sequences in E, conserved across Coronaviridae, responsible for Endoplasmic Reticulum (ER)-to-Golgi export, and relate this activity to interaction with COP-II via SEC24. Using proximity biotinylation, we identify an ADP Ribosylation Factor-1/Adaptor Protein-1 (ARFRP1/AP-1) dependent pathway allowing Golgi-to-lysosome trafficking of E. We identify sequences in E that bind AP-1, are conserved across β-coronaviruses and allow E to be trafficked from Golgi to lysosomes. We show that E acts to deacidify lysosomes and by developing a trans-complementation assay for SARS-CoV-2 structural proteins, we show that lysosomal delivery of E and its viroporin activity are necessary for efficient viral replication and release

    The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation

    Get PDF
    The centrosome plays a pivotal role in a wide range of cellular processes and its dysfunction is causally linked to many human diseases including cancer and developmental and neurological disorders. This organelle contains more than one hundred components, and yet many of them remain uncharacterised. Here we identified a novel centrosome protein Wdr8, based upon the structural conservation of the fission yeast counterpart. We showed that Wdr8 constitutively localises to the centrosome and super resolution microscopy uncovered that this protein is enriched at the proximal end of the mother centriole. Furthermore, we identified hMsd1/SSX2IP, a conserved spindle anchoring protein, as one of Wdr8 interactors by mass spectrometry. Wdr8 formed a complex and partially colocalised with hMsd1/SSX2IP. Intriguingly, knockdown of Wdr8 or hMsd1/SSX2IP displayed very similar mitotic defects, in which spindle microtubules became shortened and misoriented. Indeed, Wdr8 depletion resulted in the reduced recruitment of hMsd1/SSX2IP to the mitotic centrosome, though the converse is not true. Together, we propose that the conserved Wdr8-hMsd1/SSX2IP complex plays a critical role in controlling proper spindle length and orientation.T.T. and A.P.S were supported by Cancer Research UK.Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.bbrc.2015.10.169

    The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7

    Get PDF
    <div><p>Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)–interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19–cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes.</p></div

    A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1.

    Get PDF
    Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite

    Differential spatiotemporal targeting of Toxoplasma and Salmonella by GBP1 assembles caspase signalling platforms

    Get PDF
    Human guanylate binding proteins (GBPs), a family of IFNγ-inducible GTPases, promote cell-intrinsic defence against pathogens and host cell death. We previously identified GBP1 as a mediator of cell death of human macrophages infected with Toxoplasma gondii (Tg) or Salmonella Typhimurium (STm). How GBP1 targets microbes for AIM2 activation during Tg infection and caspase-4 during STm infection remains unclear. Here, using correlative light and electron microscopy and EdU labelling of Tg-DNA, we reveal that GBP1-decorated parasitophorous vacuoles (PVs) lose membrane integrity and release Tg-DNA for detection by AIM2-ASC-CASP8. In contrast, differential staining of cytosolic and vacuolar STm revealed that GBP1 does not contribute to STm escape into the cytosol but decorates almost all cytosolic STm leading to the recruitment of caspase-4. Caspase-5, which can bind LPS and whose expression is upregulated by IFNγ, does not target STm pointing to a key role for caspase-4 in pyroptosis. We also uncover a regulatory mechanism involving the inactivation of GBP1 by its cleavage at Asp192 by caspase-1. Cells expressing non-cleavable GBP1D192E therefore undergo higher caspase-4-driven pyroptosis during STm infection. Taken together, our comparative studies elucidate microbe-specific spatiotemporal roles of GBP1 in inducing cell death by leading to assembly and regulation of divergent caspase signalling platforms
    corecore