231 research outputs found

    Oxidation of AlInAs for current blocking in a photonic crystal laser

    Get PDF
    To make an electrically pumped photonic crystal membrane laser is a challenging task. One of the problems is how to avoid short circuiting between the p- and n-doped parts of the laser diode, when the membrane thickness is limited to 200-300nm. We propose to use the oxide of AlInAs to realize a current blocking function. In this way, based on submicron selective area re-growth, we aim for electrically injected photonic crystal lasers with high output power, small threshold currents and low power consumption. Here results are presented on the oxidation of AlInAs. The results show that it is feasible to use the oxide of AlInAs for current blocking in an InP-based membrane photonic crystal laser

    Widely tunable laser source operating at 2μm realized as monolithic InP photonic integrated circuit

    Get PDF
    A tunable laser operating from 2011 – 2042 nm realized as a monolithic InP photonic integrated circuit and fabricated within a multi project wafer run is presented. The laser is tuned using an intracavity filter based on nested asymmetric Mach-Zehnder interferometers with electrorefractive modulators. The device is intended for a single line gas spectroscopy and was designed and realized using a generic integration technology

    The 243 steps of making photonic integrated circuits in InP

    Get PDF
    The fabrication ofInP-based Photonic Integrated Circuits (PICs) is a complex process. The process used in the COBRA cleanroom in Eindhoven consists of 13 deposition, 10 lithography, 14 dry- and 7 wet-etching steps. Together with the intermediate cleaning, preparation and inspection procedures, the total process flow consists of 243 steps. In this paper we show how we created a robust modular process flow that can be usedfor a large variety of active- and passive circuits. These circuits can be fabricated together in multi-project wafer runs, allowing a drastic reduction of the fabrication costs making even small-volume production economicallyfeasible

    The 243 steps of making photonic integrated circuits in InP

    Get PDF
    The fabrication ofInP-based Photonic Integrated Circuits (PICs) is a complex process. The process used in the COBRA cleanroom in Eindhoven consists of 13 deposition, 10 lithography, 14 dry- and 7 wet-etching steps. Together with the intermediate cleaning, preparation and inspection procedures, the total process flow consists of 243 steps. In this paper we show how we created a robust modular process flow that can be usedfor a large variety of active- and passive circuits. These circuits can be fabricated together in multi-project wafer runs, allowing a drastic reduction of the fabrication costs making even small-volume production economicallyfeasible

    Phosphorylation of toxoplasma gondii secreted proteins during acute and chronic stages of infection

    Get PDF
    ABSTRACT The intracellular parasite Toxoplasma gondii resides within a membrane-bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma secretes kinases and that numerous proteins are phosphorylated after secretion. Here, we assess the role of the phosphorylation of strand-forming protein 1 (SFP1) and the related protein GRA29, two secreted proteins with unknown function. We show that both proteins form stranded structures in the PV that are independent of the previously described intravacuolar network or actin. SFP1 and GRA29 can each form these structures independently of other Toxoplasma secreted proteins, although GRA29 appears to regulate SFP1 strands. We show that an unstructured region at the C termini of SFP1 and GRA29 is required for the formation of strands and that mimicking the phosphorylation of this domain of SFP1 negatively regulates strand development. When tachyzoites convert to chronic-stage bradyzoites, both proteins show a dispersed localization throughout the cyst matrix. Many secreted proteins are reported to dynamically redistribute as the cyst forms, and secreted kinases are known to play a role in cyst formation. Using quantitative phosphoproteome and proteome analyses comparing tachyzoite and early bradyzoite stages, we reveal widespread differential phosphorylation of secreted proteins. While we found no direct evidence for phosphorylation playing a dominant role for SFP1/GRA29 redistribution in the cyst, these data support a model in which secreted kinases and phosphatases contribute to the regulation of secreted proteins during stage conversion. IMPORTANCE Toxoplasma gondii is a common parasite that infects up to one-third of the human population. Initially, the parasite grows rapidly, infecting and destroying cells of the host, but subsequently switches to a slow-growing form and establishes chronic infection. In both stages, the parasite lives within a membrane-bound vacuole within the host cell, but in the chronic stage, a durable cyst wall is synthesized, which provides protection to the parasite during transmission to a new host. Toxoplasma secretes proteins into the vacuole to build its replicative niche, and previous studies identified many of these proteins as phosphorylated. We investigate two secreted proteins and show that a phosphorylated region plays an important role in their regulation in acute stages. We also observed widespread phosphorylation of secreted proteins when parasites convert from acute to chronic stages, providing new insight into how the cyst wall may be dynamically regulated

    Effect of Intensive Versus Standard Blood Pressure Control on Stroke Subtypes

    Get PDF
    In the SPRINT (Systolic Blood Pressure Intervention Trial), the number of strokes did not differ significantly by treatment group. However, stroke subtypes have heterogeneous causes that could respond differently to intensive blood pressure control. SPRINT participants (N=9361) were randomized to target systolic blood pressures of \u3c120 mm Hg (intensive treatment) compared with \u3c140 mm Hg (standard treatment). We compared incident hemorrhage, cardiac embolism, large- and small-vessel infarctions across treatment arms. Participants randomized to the intensive arm had mean systolic blood pressures of 121.4 mm Hg in the intensive arm (N=4678) and 136.2 mm Hg in the standard arm (N=4683) at one year. Sixty-nine strokes occurred in the intensive arm and 78 in the standard arm when SPRINT was stopped. The breakdown of stroke subtypes across treatment arms included hemorrhagic (intensive treatment, n=6, standard treatment, n=7) and ischemic stroke subtypes (large artery atherosclerosis: intensive treatment n=11, standard treatment, n=13; cardiac embolism: intensive treatment n=11, standard treatment n=15; small artery occlusion: intensive treatment n=8, standard treatment n=8; other ischemic stroke: intensive treatment n=3, standard treatment n=1). Fewer strokes occurred among participants without prior cardiovascular disease in the intensive (n=43) than the standard arm (n=61), but the difference did not reach predefined statistical significance level of 0.05 (P=0.09). The interaction between baseline cardiovascular risk factor status and treatment arm on stroke risk did not reach significance (P=0.05). Similar numbers of stroke subtypes occurred in the intensive BP control and standard control arms of SPRINT

    Statistical Power of Model Selection Strategies for Genome-Wide Association Studies

    Get PDF
    Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the Comprehensive R Archive Network (CRAN) or http://bioinformatics.med.yale.edu/group/
    • …
    corecore