1,728 research outputs found

    A New Fast Silicon Photomultiplier Photometer

    Get PDF
    The realization of low-cost instruments with high technical performance is a goal which deserves some efforts in an epoch of fast technological developments: indeed such instruments can be easily reproduced and therefore allow to open new research programs in several Observatories. We realized a fast optical photometer based on the SiPM technology, using commercially available modules. Using low-cost components we have developed a custom electronic chain to extract the signal produced by a commercial MPPC module produced by Hamamatsu, in order to obtain sub millisecond sampling of the light curve of astronomical sources, typically pulsars. In the early February 2011 we observed the Crab Pulsar at the Cassini telescope with our prototype photometer, deriving its period, power spectrum and shape of its light curve in very good agreement with the results obtained in the past with other instruments.Comment: Accepted for Publications of the Astronomical Society of Pacific (PASP), 8 pages, 8 figure

    Dynamical changes of the polar cap potential structure: an information theory approach

    Get PDF
    Some features, such as vortex structures often observed through a wide spread of spatial scales, suggest that ionospheric convection is turbulent and complex in nature. Here, applying concepts from information theory and complex system physics, we firstly evaluate a pseudo Shannon entropy, <i>H</i>, associated with the polar cap potential obtained from the Super Dual Auroral Radar Network (SuperDARN) and, then, estimate the degree of disorder and the degree of complexity of ionospheric convection under different Interplanetary Magnetic Field (IMF) conditions. The aforementioned quantities are computed starting from time series of the coefficients of the 4th order spherical harmonics expansion of the polar cap potential for three periods, characterised by: (i) steady IMF <i>B<sub>z</sub></i> > 0, (ii) steady IMF <i>B<sub>z</sub></i> < 0 and (iii) a double rotation from negative to positive and then positive to negative <i>B<sub>z</sub></i>. A neat dynamical topological transition is observed when the IMF <i>B<sub>z</sub></i> turns from negative to positive and vice versa, pointing toward the possible occurrence of an order/disorder phase transition, which is the counterpart of the large scale convection rearrangement and of the increase of the global coherence. This result has been confirmed by applying the same analysis to a larger data base of about twenty days of SuperDARN data, allowing to investigate the role of IMF <i>B<sub>y</sub></i> too

    Dynamical changes of the polar cap potential structure: an information theory approach

    Get PDF
    Abstract. Some features, such as vortex structures often observed through a wide spread of spatial scales, suggest that ionospheric convection is turbulent and complex in nature. Here, applying concepts from information theory and complex system physics, we firstly evaluate a pseudo Shannon entropy, H, associated with the polar cap potential obtained from the Super Dual Auroral Radar Network (SuperDARN) and, then, estimate the degree of disorder and the degree of complexity of ionospheric convection under different Interplanetary Magnetic Field (IMF) conditions. The aforementioned quantities are computed starting from time series of the coefficients of the 4th order spherical harmonics expansion of the polar cap potential for three periods, characterised by: (i) steady IMF Bz > 0, (ii) steady IMF Bz < 0 and (iii) a double rotation from negative to positive and then positive to negative Bz. A neat dynamical topological transition is observed when the IMF Bz turns from negative to positive and vice versa, pointing toward the possible occurrence of an order/disorder phase transition, which is the counterpart of the large scale convection rearrangement and of the increase of the global coherence. This result has been confirmed by applying the same analysis to a larger data base of about twenty days of SuperDARN data, allowing to investigate the role of IMF By too

    An NF-kB site in the 5'-untraslated leader region of the Human Immunodeficiency virus type 1 enhances the viral expression in response to NF-kB-activating stimuli.

    Get PDF
    The 5'-untranslated leader region of human immunodeficiency virus, type 1 (HIV-1), includes a complex array of putative regulatory elements whose role in the viral expression is not completely understood. Here we demonstrate the presence of an NF-κB-responsive element in the trans- activation response (TAR) region of HIV-1 that confers the full induction of HIV-1 long terminal repeat (LTR) in response to NF-κB-activating stimuli, such as DNA alkylating agents, phorbol 12-myristate 13-acetate, and tumor necrosis factor-α. The TAR NF-κB site GGGAGCTCTC spans from positions +31 to +40 and cooperates with the NF-κB enhancer upstream of the TATA box in the NF-κB-mediated induction of HIV-1 LTR. The conclusion stems from the following observations: (i) deletion of the two NF-κB sites upstream of the TATA box reduces, but does not abolish, the HIV-1 LTR activation by NF-κB inducers; (ii) deletion or base pair substitutions of the TAR NF-κB site significantly reduce the HIV-1 LTR activation by NF-κB inducers; (iii) deletions of both the NF-κB sites upstream of the TATA box and the TAR NF- κB site abolish the activation of HIV-1 LTR in response to NF-κB inducers. Moreover, the p50·p65 NF-κB complex binds to the TAR NF-κB sequence and trans-activates the TAR NF-κB-directed expression. The identification of an additional NF-κB site in the HIV-1 LTR points to the relevance of NF-κB factors in the HIV-1 life cycle

    Different responses of northern and southern high latitude ionospheric convection to IMF rotations: a case study based on SuperDARN observations

    Get PDF
    Abstract. We use SuperDARN data to study high-latitude ionospheric convection over a three hour period (starting at 22:00 UT on 2 January 2003), during which the Interplanetary Magnetic Field (IMF) flipped between two states, one with By&amp;gt;&amp;gt;|Bz| and one with Bz&amp;gt;0, both with negative Bx. We find, as expected from previous works, that day side ionospheric convection is controlled by the IMF in both hemispheres. For strongly northward IMF, we observed signatures of two reverse cells, both in the Northern Hemisphere (NH) and in the Southern Hemisphere (SH), due to lobe reconnection. On one occasion, we also observed in the NH two viscous cells at the sides of the reverse cell pair. For duskward IMF, we observed in the NH a large dusk clockwise cell, accompanied by a smaller dawn cell, and the signature of a corresponding pattern in the SH. On two occasions, a three cell pattern, composed of a large clockwise cell and two viscous cells, was observed in the NH. As regards the timings of the NH and SH convection reconfigurations, we find that the convection reconfiguration from a positive Bz dominated to a positive By dominated pattern occurred almost simultaneously (i.e. within a few minutes) in the two hemispheres. On the contrary, the reconfiguration from a By dominated to a northward IMF pattern started in the NH 8–13 min earlier than in the SH. We suggest that part of such a delay can be due to the following mechanism: as IMF Bx&amp;lt;0, the northward-tailward magnetosheath magnetic field reconnects with the magnetospheric field first tailward of the northern cusp and later on tailward of the southern cusp, due to the IMF draping around the magnetopause.</p

    Gender differences in vaccine therapy: where are we in Covid-19 pandemic?

    Get PDF
    Vaccination is one of the greatest achievements of public health. Vaccination programs have contributed to the decline in mortality and morbidity of various infectious diseases. This review aims to investigate the impact of sex/gender on the vaccine acceptance, responses, and outcomes. The studies were identified by using PubMed, until 30th June 2020. The search was performed by using the following keywords: SARS-CoV-2, Covid-19, gender, sex, vaccine, adverse reaction. Clinical trials, retrospective and prospective studies were included. Studies written in languages other than English were excluded. Three authors (TC, EB and IA) reviewed all study abstracts. Studies were included if gender differences in response to vaccination trials were reported. All selected studies were qualitatively analyzed. Innate recognition and response to viruses, as well as, adaptive immune responses during viral infections, differ between females and males. Unfortunately, a majority of vaccine trials have focused on healthy people, with ages between 18 to 65 years, excluding the elderly, pregnant women, post-menopausal female and children. In conclusion, it is apparent that the design of vaccines and vaccine strategies should be sex-specific, to reduce adverse reactions in females and increase immunogenicity in males. It should be mandatory to examine sex-related variables in pre-clinical and clinical vaccine trials, such as their crucial role for successful prevention of pandemic Covid-19

    Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs

    No full text
    Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin

    Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs

    Get PDF
    Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin

    A New Fast Silicon Photomultiplier Photometer

    Get PDF
    The Crab pulsar is one of the most intensively studied X-ray/optical objects, but up to now only a small number of research groups have based their photometers on SiPM technology. In early February 2011, the Crab pulsar signal was observed with our photometer prototype. With low-cost instrumentation, the results of the analysis are very significant: the processed data acquired on the Crab pulsar gave both a good light curve and a good power spectrum, in comparison with the data analysis results of other more expensive photometer instrumentation
    corecore