1,083 research outputs found

    Gauge approach to the specific heat in the normal state of cuprates

    Full text link
    Many experimental features of the electronic specific heat and entropy of high Tc cuprates in the normal state, including the nontrivial temperature dependence of the specific heat coefficient and negative intercept of the extrapolated entropy to T=0 for underdoped cuprates, are reproduced using the spin-charge gauge approach to the t-J model. The entropy turns out to be basically due to fermionic excitations, but with a temperature dependence of the specific heat coefficient controlled by fluctuations of a gauge field coupling them to gapful bosonic excitations. In particular the negative intercept of the extrapolated entropy at T=0 in the pseudogap ``phase'' is attributed to the scalar component of the gauge field, which implements the local no-double occupancy constraint.Comment: 5 pages, 5 figure

    Variational Monte Carlo for spin-orbit interacting systems

    Full text link
    Recently, a diffusion Monte Carlo algorithm was applied to the study of spin dependent interactions in condensed matter. Following some of the ideas presented therein, and applied to a Hamiltonian containing a Rashba-like interaction, a general variational Monte Carlo approach is here introduced that treats in an efficient and very accurate way the spin degrees of freedom in atoms when spin orbit effects are included in the Hamiltonian describing the electronic structure. We illustrate the algorithm on the evaluation of the spin-orbit splittings of isolated carbon and lead atoms. In the case of the carbon atom, we investigate the differences between the inclusion of spin-orbit in its realistic and effective spherically symmetrized forms. The method exhibits a very good accuracy in describing the small energy splittings, opening the way for a systematic quantum Monte Carlo studies of spin-orbit effects in atomic systems.Comment: 7 pages, 0 figure

    The Conformal Willmore Functional: a Perturbative Approach

    Full text link
    The conformal Willmore functional (which is conformal invariant in general Riemannian manifold (M,g)(M,g)) is studied with a perturbative method: the Lyapunov-Schmidt reduction. Existence of critical points is shown in ambient manifolds (R3,gϵ)(\mathbb{R}^3, g_\epsilon) -where gϵg_\epsilon is a metric close and asymptotic to the euclidean one. With the same technique a non existence result is proved in general Riemannian manifolds (M,g)(M,g) of dimension three.Comment: 34 pages; Journal of Geometric Analysis, on line first 23 September 201

    Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals-corrected Density Functional Theory

    Full text link
    The DFT/vdW-WF method, recently developed to include the Van der Waals interactions in Density Functional Theory (DFT) using the Maximally Localized Wannier functions, is applied to the study of the adsorption of rare-gas atoms (Ne, Ar, Kr, and Xe) on the Cu(111) and Pb(111) surfaces, at three high-symmetry sites. We evaluate the equilibrium binding energies and distances, and the induced work-function changes and dipole moments. We find that, for Ne, Ar, and Kr on the Cu(111) surface the different adsorption configurations are characterized by very similar binding energies, while the favored adsorption site for Xe on Cu(111) is on top of a Cu atom, in agreement with previous theoretical calculations and experimental findings, and in common with other close-packed metal surfaces. Instead, the favored site is always the hollow one on the Pb(111) surface, which therefore represents an interesting system where the investigation of high-coordination sites is possible. Moreover, the Pb(111) substrate is subject, upon rare-gas adsorption, to a significantly smaller change in the work function (and to a correspondingly smaller induced dipole moment) than Cu(111). The role of the chosen reference DFT functional and of different Van der Waals corrections, and their dependence on different rare-gas adatoms, are also discussed

    Van der Waals Interactions in DFT using Wannier Functions: improved C6C_6 and C3C_3 coefficients by a new approach

    Full text link
    A new implementation is proposed for including van der Waals interactions in Density Functional Theory using the Maximally-Localized Wannier functions. With respect to the previous DFT/vdW-WF method, the present DFT/vdW-WF2 approach, which is based on the simpler London expression and takes into account the intrafragment overlap of the localized Wannier functions, leads to a considerable improvement in the evaluation of the C6C_6 van der Waals coefficients, as shown by the application to a set of selected dimers. Preliminary results on Ar on graphite and Ne on the Cu(111) metal surface suggest that also the C3C_3 coefficients, characterizing molecule-surfaces van der Waals interactions are better estimated with the new scheme.Comment: 5 pages, 2 table

    Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type

    Full text link
    The critical set C of the operator F:H^2_D([0,pi]) -> L^2([0,pi]) defined by F(u)=-u''+f(u) is studied. Here X:=H^2_D([0,pi]) stands for the set of functions that satisfy the Dirichlet boundary conditions and whose derivatives are in L^2([0,pi]). For generic nonlinearities f, C=\cup C_k decomposes into manifolds of codimension 1 in X. If f''0, the set C_j is shown to be non-empty if, and only if, -j^2 (the j-th eigenvalue of u -> u'') is in the range of f'. The critical components C_k are (topological) hyperplanes.Comment: 6 pages, no figure

    Quasi-periodic solutions of completely resonant forced wave equations

    Full text link
    We prove existence of quasi-periodic solutions with two frequencies of completely resonant, periodically forced nonlinear wave equations with periodic spatial boundary conditions. We consider both the cases the forcing frequency is: (Case A) a rational number and (Case B) an irrational number.Comment: 25 pages, 1 figur

    Familial hypercholesterolemia in cardiac rehabilitation: a new field of interest

    Get PDF
    Familial hypercholesterolemia (FH) is a frequently undiagnosed genetic disease characterized by substantial elevations of low-density lipoprotein cholesterol (LDL-C). The prevalence of heterozygous FH (HeFH) in the general population is 1:500 inhabitants, while the prevalence of homozygous FH (HoFH) is 1:1,000,000. If FH is not identified and aggressively treated at an early age, affected individuals have a 20-fold increased lifetime risk of coronary heart disease compared with the general population. This narrative review provide a concise overview of recommendations for diagnosis and treatment of adults and children with FH, and discuss the utility of considering FH as a comorbidity at the entry of cardiac rehabilitation programme

    Colossal Atomic Force Response in van der Waals Materials Arising From Electronic Correlations

    Get PDF
    Understanding static and dynamic phenomena in complex materials at different length scales requires reliably accounting for van der Waals (vdW) interactions, which stem from long-range electronic correlations. While the important role of many-body vdW interactions has been extensively documented when it comes to the stability of materials, much less is known about the coupling between vdW interactions and atomic forces. Here we analyze the Hessian force response matrix for a single and two vdW-coupled atomic chains to show that a many-body description of vdW interactions yields atomic force response magnitudes that exceed the expected pairwise decay by 3-5 orders of magnitude for a wide range of separations between the perturbed and the observed atom. Similar findings are confirmed for graphene and carbon nanotubes. This colossal force enhancement suggests implications for phonon spectra, free energies, interfacial adhesion, and collective dynamics in materials with many interacting atoms
    • …
    corecore