1,083 research outputs found
Gauge approach to the specific heat in the normal state of cuprates
Many experimental features of the electronic specific heat and entropy of
high Tc cuprates in the normal state, including the nontrivial temperature
dependence of the specific heat coefficient and negative intercept of the
extrapolated entropy to T=0 for underdoped cuprates, are reproduced using the
spin-charge gauge approach to the t-J model. The entropy turns out to be
basically due to fermionic excitations, but with a temperature dependence of
the specific heat coefficient controlled by fluctuations of a gauge field
coupling them to gapful bosonic excitations. In particular the negative
intercept of the extrapolated entropy at T=0 in the pseudogap ``phase'' is
attributed to the scalar component of the gauge field, which implements the
local no-double occupancy constraint.Comment: 5 pages, 5 figure
Variational Monte Carlo for spin-orbit interacting systems
Recently, a diffusion Monte Carlo algorithm was applied to the study of spin
dependent interactions in condensed matter. Following some of the ideas
presented therein, and applied to a Hamiltonian containing a Rashba-like
interaction, a general variational Monte Carlo approach is here introduced that
treats in an efficient and very accurate way the spin degrees of freedom in
atoms when spin orbit effects are included in the Hamiltonian describing the
electronic structure. We illustrate the algorithm on the evaluation of the
spin-orbit splittings of isolated carbon and lead atoms. In the case of the
carbon atom, we investigate the differences between the inclusion of spin-orbit
in its realistic and effective spherically symmetrized forms. The method
exhibits a very good accuracy in describing the small energy splittings,
opening the way for a systematic quantum Monte Carlo studies of spin-orbit
effects in atomic systems.Comment: 7 pages, 0 figure
The Conformal Willmore Functional: a Perturbative Approach
The conformal Willmore functional (which is conformal invariant in general
Riemannian manifold ) is studied with a perturbative method: the
Lyapunov-Schmidt reduction. Existence of critical points is shown in ambient
manifolds -where is a metric close
and asymptotic to the euclidean one. With the same technique a non existence
result is proved in general Riemannian manifolds of dimension three.Comment: 34 pages; Journal of Geometric Analysis, on line first 23 September
201
Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals-corrected Density Functional Theory
The DFT/vdW-WF method, recently developed to include the Van der Waals
interactions in Density Functional Theory (DFT) using the Maximally Localized
Wannier functions, is applied to the study of the adsorption of rare-gas atoms
(Ne, Ar, Kr, and Xe) on the Cu(111) and Pb(111) surfaces, at three
high-symmetry sites. We evaluate the equilibrium binding energies and
distances, and the induced work-function changes and dipole moments. We find
that, for Ne, Ar, and Kr on the Cu(111) surface the different adsorption
configurations are characterized by very similar binding energies, while the
favored adsorption site for Xe on Cu(111) is on top of a Cu atom, in agreement
with previous theoretical calculations and experimental findings, and in common
with other close-packed metal surfaces. Instead, the favored site is always the
hollow one on the Pb(111) surface, which therefore represents an interesting
system where the investigation of high-coordination sites is possible.
Moreover, the Pb(111) substrate is subject, upon rare-gas adsorption, to a
significantly smaller change in the work function (and to a correspondingly
smaller induced dipole moment) than Cu(111). The role of the chosen reference
DFT functional and of different Van der Waals corrections, and their dependence
on different rare-gas adatoms, are also discussed
Van der Waals Interactions in DFT using Wannier Functions: improved and coefficients by a new approach
A new implementation is proposed for including van der Waals interactions in
Density Functional Theory using the Maximally-Localized Wannier functions. With
respect to the previous DFT/vdW-WF method, the present DFT/vdW-WF2 approach,
which is based on the simpler London expression and takes into account the
intrafragment overlap of the localized Wannier functions, leads to a
considerable improvement in the evaluation of the van der Waals
coefficients, as shown by the application to a set of selected dimers.
Preliminary results on Ar on graphite and Ne on the Cu(111) metal surface
suggest that also the coefficients, characterizing molecule-surfaces van
der Waals interactions are better estimated with the new scheme.Comment: 5 pages, 2 table
Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type
The critical set C of the operator F:H^2_D([0,pi]) -> L^2([0,pi]) defined by
F(u)=-u''+f(u) is studied. Here X:=H^2_D([0,pi]) stands for the set of
functions that satisfy the Dirichlet boundary conditions and whose derivatives
are in L^2([0,pi]). For generic nonlinearities f, C=\cup C_k decomposes into
manifolds of codimension 1 in X. If f''0, the set C_j is shown to be
non-empty if, and only if, -j^2 (the j-th eigenvalue of u -> u'') is in the
range of f'. The critical components C_k are (topological) hyperplanes.Comment: 6 pages, no figure
Quasi-periodic solutions of completely resonant forced wave equations
We prove existence of quasi-periodic solutions with two frequencies of
completely resonant, periodically forced nonlinear wave equations with periodic
spatial boundary conditions. We consider both the cases the forcing frequency
is: (Case A) a rational number and (Case B) an irrational number.Comment: 25 pages, 1 figur
Familial hypercholesterolemia in cardiac rehabilitation: a new field of interest
Familial hypercholesterolemia (FH) is a frequently undiagnosed genetic disease characterized by substantial elevations of low-density lipoprotein cholesterol (LDL-C). The prevalence of heterozygous FH (HeFH) in the general population is 1:500 inhabitants, while the prevalence of homozygous FH (HoFH) is 1:1,000,000. If FH is not identified and aggressively treated at an early age, affected individuals have a 20-fold increased lifetime risk of coronary heart disease compared with the general population. This narrative review provide a concise overview of recommendations for diagnosis and treatment of adults and children with FH, and discuss the utility of considering FH as a comorbidity at the entry of cardiac rehabilitation programme
Colossal Atomic Force Response in van der Waals Materials Arising From Electronic Correlations
Understanding static and dynamic phenomena in complex materials at different
length scales requires reliably accounting for van der Waals (vdW)
interactions, which stem from long-range electronic correlations. While the
important role of many-body vdW interactions has been extensively documented
when it comes to the stability of materials, much less is known about the
coupling between vdW interactions and atomic forces. Here we analyze the
Hessian force response matrix for a single and two vdW-coupled atomic chains to
show that a many-body description of vdW interactions yields atomic force
response magnitudes that exceed the expected pairwise decay by 3-5 orders of
magnitude for a wide range of separations between the perturbed and the
observed atom. Similar findings are confirmed for graphene and carbon
nanotubes. This colossal force enhancement suggests implications for phonon
spectra, free energies, interfacial adhesion, and collective dynamics in
materials with many interacting atoms
- …