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Understanding complex materials at different length scales requires reliably accounting for van der
Waals (vdW) interactions, which stem from long-range electronic correlations. While the important role of
many-body vdW interactions has been extensively documented for the stability of materials, much less is
known about the coupling between vdW interactions and atomic forces. Here we analyze the Hessian force
response matrix for a single and two vdW-coupled atomic chains to show that a many-body description of
vdW interactions yields atomic force response magnitudes that exceed the expected pairwise decay by 3–5
orders of magnitude for a wide range of separations between perturbed and observed atoms. Similar
findings are confirmed for carbon nanotubes, graphene, and delamination of graphene from a silicon
substrate previously studied experimentally. This colossal force enhancement suggests implications for
phonon spectra, free energies, interfacial adhesion, and collective dynamics in materials with many
interacting atoms.
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Many phenomena in materials involve interactions
between electrons and atomic lattices. Such interactions
are the cornerstone of many-body physics in condensed
matter and they contribute to quantum phenomena such as
the temperature-dependence of the electrical conductivity
in metals [1,2], Cooper-pair formation in superconductivity
[3,4], thermalization and transport of charge carriers [5],
and magnetic properties of molecules and materials [2].
The dimensionality, system size, and nature of interatomic
interactions (strong or weak bonding) are critical aspects
that influence the multitude of phenomena arising from the
interplay between electrons and atomic lattices in materials.
Electron–lattice interactions are also key in applications,
including adhesion, cohesion [6], debonding [7], and
fracture [8] in materials under different conditions such
as irradiation [9], embrittlement [10], and to investigate the
impact of defects [11] on material reliability.
While a comprehensive understanding of electron-

phonon coupling effects has been achieved in condensed-
matter physics [1,12,13], little is known about the interplay
between nuclear displacements and electronic fluctuations
at the scale of engineering materials [14,15]. Even when it
is recognized that quantum-mechanical forces at the atomic

scale are crucial to determine the mechanics of materials at
the macroscopic scale, quantum physics and continuum
mechanics models are developed independently. Quantum-
mechanical methods are restricted to the modeling of small
and well-ordered systems, whereas mechanical properties
in mesoscopic and macroscopic engineering problems are
routinely quantified resorting to pairwise (PW) potentials.
In this Letter, we study systems of one and two

interacting carbynelike chains (see Fig. 1 for the explan-
ation of the geometry and the atomic interaction model).
We focus on the analysis of the atomistic Hessian matrix,
which measures the force response on an atom resulting
from a perturbation of itself (diagonal terms) or a different
atom (off-diagonal terms). The Hessian matrix gives access
to computing many response properties, such as phonon
eigenvalues and eigenvectors and free energies. We find
that a quantum many-body description of vdW interactions
yields atomic force response magnitudes that exceed the
expected pairwise decay by 3–5 orders of magnitude for a
wide range of separations between the perturbed and the
observed atom. This is in contrast to ratios between many-
body and pairwise vdW interaction energies for fixed
structures, which rarely exceed an order of magnitude
[16]. Linear chains are analyzed in this study to facilitate
physical insight into complex many-body mechanisms.
However, our findings of intricate coupling mechanisms
between phonons and collective electronic correlations are
also confirmed here for carbon nanotubes, graphene, and
experimentally studied delamination of graphene from a Si
substrate [15]. Our study is motivated by experimental
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evidence of intriguing mechanical properties of systems
at the nanometer and micrometer scales, due to their
enhanced surface-to-volume ratio, high flexibility, and
peculiar response properties [17–27]. The explanation
of many of these experimental findings is expected to
require accounting for many-body vdW correlation terms
[16,28–32], and explicit inclusion of the complex geomet-
rical distortions at the nanoscale [15].
We start by computing and analyzing the Hessian

response matrix corresponding to pairwise (PW) and
many-body vdW interactions. In what follows, we will
use upper indices to refer to Cartesian fx; y; zg compo-
nents, lowercase lower indices to refer to atoms, and
uppercase lower indices to indicate normal modes. The
ath Cartesian component of the PW force acting on the ith
atom is computed as

FPW;a
i ¼ ∂rai

�XN
j≠i

fdamp × C6;ij=r6ij

�
; ð1Þ

where rij ¼ jri − rjj is the distance between atoms i and j,
C6;ij is the vdW coefficient [33], and fdamp is a short-range
damping function.Within themany-body dispersion (MBD)
method, instead, the electronic response is mapped onto a set
of atom-centered quantum harmonic oscillators (QHOs),
coupled by a dipolar potential [34]. The interaction tensor
CMBD;ab
ij is composed by N2 (3 × 3) blocks that account for

the coupling between each pair of atoms i and j:

CMBD;ab
ij ¼ ω2

i δijδab þ ð1 − δijÞωiωj

ffiffiffiffiffiffiffiffiffiffi
α0i α

0
j

q
Tab
ij : ð2Þ

Here α0i and ωi are the static dipole polarizability and
characteristic frequency of the ith atom, while Tab

ij is

the dipolar tensor for two overlapping QHOs modeling
atoms i and j. Diagonalization of the interaction tensor
STCMBDS ¼ Λ (where Λab

IJ ¼ δIJδabðω̃a
I Þ2) yields the 3N

collective oscillation modes of the system (via the trans-
formation matrix S) and the corresponding interacting
frequencies ω̃a

I . The MBD interaction energy is computed
as the QHO ground-state energy shift caused by the dipolar
interaction

Ec;MBD ¼ ℏ

�XN
I¼1

X
a¼fx;y;zg

ω̃a
I =2 −

XN
j¼1

3ωj=2
�
: ð3Þ

The MBD atomic force acting on atom i, FMBD;a
i ¼

−∂rai
Ec;MBD, can be written as

FMBD;a
i ¼ −

1

4
½ðΛbb

JJÞ−1=2STbcJl ð∂rai CMBDÞcdlmSdbmJ�; ð4Þ

where repeated indices are contracted (the same convention
will be adopted hereafter). By definition, the MBD fluc-
tuation modes have collective character, and this is reflected
in the above force expression: Eq. (4) involves both depend-
ence on local atomic indices (l,m) and collective degrees of
freedom (MBDmode index J). The nonlocality of plasmon-
like MBD modes implies that a change in the position (as
well as mass and/or oscillator frequency) of a single atom
could produce force response throughout the entire system.
To assess the relevance of the many-body mechanical

response, we analyze the vdW Hessian tensor, defined as
HMBD;ab

ij ¼ −∂rai FMBD;b
j (with analogous expression for

PW). This tensor quantifies the vdW force response on
atom i, to an infinitesimal displacement of the atom j.
The Hessian was computed analytically for both PW and
MBD methods. Heat maps of the Hessian matrix for
both PW and MBD interactions are plotted in Figs. 2(a)
and 2(b). A system of two parallel chains is considered with
400 atoms per chain. In the presence of N atoms, the
Hessian is a 3N × 3N matrix. However, for our purposes it
is sufficient to analyze the condensed Hessian N × N

matrix H�
ij¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHxx

ij Þ2þðHyy
ij Þ2þðHzz

ij Þ2
q

. The off-diagonal

Hessian components that couple longitudinal and trans-
versal degrees of freedom are 5–6 orders of magnitude
smaller and have no impact on the forthcoming analysis.
As expected, the displacement of an atom j has the

largest impact on neighboring atoms i [see Figs. 2(a)
and 2(b)]. Accordingly, largest Hessian elements are found
on the main diagonal, measuring the force response at the
atomic sites closest to the atomic perturbation within the
same chain. The minor diagonal, instead, corresponds to
the force response on the atoms belonging to the opposite
chain (farther away due to finite interchain separation h).
Comparison between MBD and PW results indicates a
substantial role of many-body effects on the force-response
nonlocality. Moreover, quasivanishing MBD Hessian
elements found for long interatomic separations [darker

FIG. 1. Visual depiction of the studied geometry and the
interatomic interaction model. Two carbyne chains with near-
est-neighbor distance of 1.4 Å are separated by a vertical distance
h. The vdW interactions between all atoms are treated via either a
pairwise or a many-body model based on overlapping quantum
harmonic oscillators coupled by a dipolar potential (see text for
details). The Hessian matrix elements are computed analytically,
measuring the force response at atom m (yellow atoms) to the
displacement of atom n (green atom). For computing adhesive
properties, the chemical bonds (local elasticity) are modeled via
harmonic springs.
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regions in Figs. 2(a) and 2(b)] are about 3 orders of
magnitude larger (10−9 meV=Å2) than those found at the
PW level (10−12 meV=Å2). While both of these values may
seem small, the substantial difference between MBD and
PW has large implications for dynamics and adhesion as we
will show below. We also suggest that long-range force
response could play a key role at the macroscopic scale
and ambient conditions, where the quantity of atoms
approaches Avogadro’s number and entropic effects always
imply a certain degree of disorder at different interatomic
length scales.
We now explicitly analyze the response in the longi-

tudinal and transversal components of the atomic forces
along the chain induced by a displacement of the central
atom. As seen from Figs. 2(c) and 2(d), the MBD and PW
force response acts along the chain in a radically different
way. Within MBD, Hessian elements exhibit slower decay,
and the MBD=PW ratio is always considerably greater

than 1, in particular at long range with differences of 3–5
orders of magnitude.
Within the single chain we observe that, after a steep

growth due to slower power law decay of the MBD
interaction [16], the MBD=PW Hessian ratio tends to
saturate [Fig. 2(d)] beyond the 70 Å scale. This is valid
for both longitudinal and transversal Hessian components
and suggests that MBD forces exhibit renormalized
PW behavior at long range. The renormalization factor
is very large, in fact it is necessary to multiply the PW C6

parameter by ∼103 and ∼105 to effectively reproduce
the transversal and longitudinal MBD results, respec-
tively. Analogous renormalization effects occur also for
interchain Hessian elements, i.e., for force perturbation due
to atomic displacement in the other chain. In the transversal
yy case, force response oscillations emerge along the
chain. This can be analytically understood at the PW level,
where a competition arises between a monotonically

(b)(a)

(d)(c)

FIG. 2. Heat maps of the condensed Hessian matrix for (a) MBD and (b) PW vdW interactions. Plot axes in (a),(b) correspond to i and
j atomic sites, respectively. A system of two parallel carbyne chains is considered (with 400 atoms per chain). Here i; j ¼ ð1; 400Þ
indicate atoms in the first chain, while i; j ¼ ð401; 800Þ correspond to the second chain in reversed order. The main diagonal
corresponds to force responses on the same chain, while the minor diagonal corresponds to the chain vertically separated by h ¼ 10 Å.
In panels (c) and (d), one-dimensional projections are shown upon longitudinal displacement of the central atom in one of the chains.
Systems composed of one or two chains (h ¼ 10 Å) with different lengths and different interchain distances were considered at MBD
and PW levels.

PHYSICAL REVIEW LETTERS 128, 106101 (2022)

106101-3



decreasing R−8 factor (due to the second derivative of R−6)
and a term [proportional to ð7Δx2 − h2Þ=ðΔx2 þ h2Þ,
where R2 ¼ h2 þ Δx2], which is increasing with x (longi-
tudinal distance).
To rationalize the renormalized pairwiselike behavior of

the MBD Hessian elements, we can rewrite the MBD
energy in Eq. (3) using perturbative expansion in terms of
the screened polarizability matrix Aab

ij and the coupling
tensor Tbc

jm [34]:

Ec;MBD ≃ −
Z

∞

0

dω
4π

Tr½Aab
ij ðiωÞTbc

jmA
cd
mnðiωÞTda

ni �: ð5Þ

The shown second-order term scales as C6;jmr−6jm with a
screened C6;jm coefficient and yields the exact MBD
interaction energy for widely separated atoms j and m,
while at shorter distances higher-order terms containing
higher powers of A and T should be considered. We
computed the polarizability A of the single chain using
the self-consistent screening (SCS) equation [35,36]. The
resulting matrixAab

ij measures the dipolar response at site i
to an electric field applied at j. From Fig. 3 we observe that
the longitudinal (xx) polarizability is nonlocal, but has a
finite range λC of around ∼70 Å, due to the presence
of a finite gap [16] in the dipole excitation spectrum.
The renormalization of the single diagonal elementsAxx

ii is
moderate. However, due to the nonlocality of the total
polarizability tensor given by off-diagonal elements, about
100 carbon atoms coherently polarize in the presence of a
local electric field. The cumulative longitudinal dipole
response of these atoms amounts to ∼400 bohr3, which

corresponds to a polarizability renormalization factor of
∼40 compared to an isolated carbon atom. This polarization
enhancement is characteristic for Coulomb screening in
low-dimensional systems, where electronic many-body
effects imply strong and delocalized [16] polarization
response in contrast to dense well-ordered solids [35].
The finite coherence length scale λC implies that for
distances larger than λC, different chain fragments perceive
each other as collective polarizability centers. In other
words, the vdW interaction between atoms i and j is
amplified by the surrounding atoms within λC, which
respond simultaneously, increasing the internal electric
field response along the chain. We note that the C6

coefficient for two identical oscillators having static polar-
izability α and oscillator frequency ω̄ is proportional to
α2ω̄. Hence, by accounting for the polarizability of the
coherent chain fragments (characterized by the rescaling
factor ∼40 and containing 100 atoms), one obtains an
effective C6 coefficient renormalization of ∼103, which
qualitatively accounts for our numerical observations in
Fig. 2. The even larger renormalization (∼105) found in the
xx Hessian elements stems from charge-overlap effects,
that are most sensitive to longitudinal displacements.
In contrast, minor renormalization effects are observed
in the transverse yy polarizability, while mixed xy terms are
essentially vanishing. As shown in Fig. 3, the yy polar-
izability is far less nonlocal than xx, as a consequence
of a rapidly damped oscillatory behavior, reminiscent of
Friedel’s oscillations [2].
In real materials, the geometry of collective polarizability

centers will depend on two main factors: nonlocal elec-
tronic polarization and charge overlap effects. Low-
dimensional and heterogeneous materials with complex
unit cells are characterized by strongly nonlocal polariza-
tion response [16,30,31,35], thus we expect the colossal
force enhancement to hold in general for materials of
arbitrary dimensionality where polarizable covalent bonds
(dense regions) interplay with van der Waals interactions
(sparse regions). For example, 3D organic–inorganic
frameworks exhibit strong MBD interactions [37], and
should in turn possess colossal atomic force response.
In contrast, minor effects are expected for solids with small
unit cells where the polarization response is effectively
localized or for materials with small dielectric constants
such as noble-gas solids. To show that our findings for
chains can be generalized to more complex structures,
we carried out Hessian calculations for a graphene layer
and a carbon nanotube. In both cases, we find renor-
malization factors HMBD=HPW of 103 to 104 at large
interatomic separations, thus confirming the general rel-
evance of colossal force response in vdW materials (see
Supplemental Material [38] for a detailed analysis).
Finally, we demonstrate the importance of the many-

body force response for adhesive interactions between
two (initially parallel) carbyne chains. We use a hybrid
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FIG. 3. Interacting polarizability for a carbyne chain containing
2001 atoms. Solid lines report polarizability elements Aaa

īj : the
longitudinal (a ¼ x) and transversal (a ¼ y) dipole response
measured at the atom j, located at a given distance from the
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or yy components,
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approach introduced in Ref. [15] that combines classical
elasticity for local chemical bonding and nonlocal vdW
interactions to compute vertical adhesive forces (see Fig. 1
for the depiction of the two-chain model). We compare in
Fig. 4 the average vdW force acting on the lower chain for
two different cases: flat (unrelaxed) configuration and fully
relaxed geometry obtained starting from flat parallel
configuration constraining edge atoms to their initial
positions, at different edge-edge interchain distances h.
For a set of h values starting from h0 ¼ 15 Å, we first
compute the total vdW force Fy acting on the lower chain
and then compute the average force F̄y as defined in Fig. 4.
The inclusion of MBD interactions consistently leads to
stronger adhesive forces compared to the PW method. The
two chains slightly bend upon relaxation, effectively
reducing the interchain separation, and the effect is larger
when the MBD method is used. For instance, the average
and minimum MBD (PW) interchain separations are
19.75 (19.96) and 19.63 Å (19.94 Å), respectively, when
h ¼ 20 Å. In addition, geometry relaxation using PW vdW
forces leads to a negligible change in the adhesion, while
relaxed geometries with MBD yields an increase of a factor
of 2 in the adhesive force. We note that much larger
adhesive force enhancements are observed upon delami-
nation of two ∼2 μm long coupled chains (see Fig. 1 inset,
and Ref. [15]). The two chains (initially parallel, and
composed of C and Si atoms, respectively) were withdrawn
from each other, opening a crack of width h from the left

edge and measuring the mechanical stress as a function
of h. Qualitatively different traction-separation laws are
found after geometrical relaxation comparing MBD and
PW models, not only in terms of higher stress modulus,
but also of much longer range obtained with MBD. The
force response in vdW materials arising from many-body
electronic correlations is responsible for this enhance-
ment effect, and explains the micrometer-scale adhesive
stress observed in experiments [15,25,26,39]. In fact, even
longer-ranged stress was found when going from 1D chains
to more appropriate 2D=3D delamination models [15],
providing qualitative agreement with experimental data.
In summary, we found a cooperative interplay between

electronic correlations and atomic force response in
materials coupled by van der Waals interactions. The non-
local electronic polarization response and the quantum-
mechanical treatment of vdW interactions beyond PW
approximations are crucial to correctly describe this col-
lective effect. The emergent force response drives nontrivial
geometrical relaxations [15] in qualitative agreement with
the experimental evidence of micrometer-ranged stress upon
graphene delamination. Many material properties stem from
the atomic Hessian matrix, meaning that our findings may
have implications for phonon spectra, free energies, inter-
facial adhesion, and in general collective dynamics in
materials possessing both dense and sparse regions.
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