17 research outputs found

    MAD water: integrating modular, adaptive, and decentralized approaches for water security in the climate change era

    Get PDF
    Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of—and reversing gains made by—this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community-based water management, small drinking water systems, point-of-use treatment, small-scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance

    Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs)

    No full text
    Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF) cells on conducting indium tin oxide (ITO) and semi-conducting, silicon (Si) and gallium arsenide (GaAs), surfaces modified with self-assembled monolayers (SAMs) containing amino (–NH2) and methyl (–CH3) end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research
    corecore