33 research outputs found

    Characterization of MgtC, a Virulence Factor of Salmonella enterica Serovar Typhi

    Get PDF
    The MgtC is a virulence factor in Salmonella Typhimurium that is required for growth at low-Mg2+ concentrations and intramacrophage survival. This gene is codified in a conserved region of the Salmonella pathogenicity island 3 (SPI-3), and is also present in the chromosome of other Salmonella serovars. In this study we characterized the MgtC factor in S. Typhi, a human specific pathogen, by using mgtC and SPI-3 mutant strains. We found that MgtC is the most important factor codified in the SPI-3 of S. Typhi for growth in low-Mg2+ media and survival within human cells. In addition, by using reporter genes we determined that the low-Mg2+ concentration, acidic media and PhoP regulator induce mgtC expression in S. Typhi. We suggest that MgtC is the most important virulence factor codified in the SPI-3 of S. Typhi

    Characterization of Salmonella enterica Serovar Typhimurium and Monophasic Salmonella Serovar 1,4,[5],12:i:- Isolates in Thailand

    No full text
    Duplex PCR was developed to screen Salmonella enterica serovar Typhimurium phage type DT104 and related strains in Thailand because a phage typing laboratory of serovar Typhimurium is not available. Of 46 isolates of serovar Typhimurium and 32 isolates of S. enterica serovar 1,4,[5],12:i:-, 15 (33%) and 30 (94%) were duplex PCR positive, respectively. All isolates were submitted for phage typing to analyze the specificity of the PCR assay. Among serovar Typhimurium isolates that yielded positive duplex PCRs, only seven isolates were phage types DT104 or U302, and eight isolates were undefined types, whereas the negative PCR isolates were either other phage types, including DT7, DT12, DT66, DT79, DT166, DT170, DT193, and DT208 or an undefined type. The serovar Typhimurium and serovar 1,4,[5],12:i:- isolates that were duplex PCR positive were further subtyped by using XbaI PFGE to reveal their genetic relatedness. All serovar Typhimurium phage type DT104 strains had indistinguishable chromosomal patterns. The isolates of phage type U302 and most of the serovar 1,4,[5],12:i:- isolates that were duplex PCR positive yielded similar pulsed-field gel electrophoresis patterns. The patterns of PCR-negative isolates distinctly differed from the patterns of PCR-positive isolates. A total of 26% of all isolates had a dominant R-type ACSSuTG that was not found in the isolates of phage type DT104

    Antimicrobial Resistance in Poultry Farming: A Look Back at Environmental Escherichia coli Isolated from Poultry Farms during the Growing and Resting Periods

    No full text
    During the production cycle of poultry farms, pathogens may remain in the next cycle of rearing young chickens. This study was conducted at three industrial chicken farms (A, B, and C) in central Thailand. Results showed that the percentages of E. coli during the resting period in farms A, B, and C were 28.6, 53.8, and 7.8, respectively, and those during the growing period were 45, 68.8, and 75. The most common resistant patterns during the resting period in all farms were AML-AMP-SXT and AML-AMP-DO-SXT, and those during the growing period were AML-AMP and AML-AMP-SXT. The locations of blaTEM-positive E. coli isolates from the inside houses (inside buildings) of all farms included cloacal swabs, floors, water nipples, pan feeders, and husks, whereas that from the outside environment included boots, wastewater, soil, and water from cooling pads and tanks. Our results indicate that the percentage of antimicrobial resistance (AMR) and its pattern depend on the husbandry period and the strictness of biosecurity. Moreover, our findings derived from samples gathered from broiler farms between 2013 and 2015 align with those of the current studies, highlighting persistent trends in E. coli resistance to various antimicrobial agents. Therefore, enhancing biosecurity measures throughout both the resting and growing periods is crucial, with a specific focus on managing raw materials, bedding, breeding equipment, and staff hygiene to reduce the transmission of antimicrobial resistance in poultry farms

    Antimicrobial resistance profiles of Escherichia coli from swine farms using different antimicrobials and management systems

    Get PDF
    Background and Aim: The emerging of antimicrobial-resistant foodborne bacteria is a serious public health concern worldwide. This study was conducted to determine the association between farm management systems and antimicrobial resistance profiles of Escherichia coli isolated from conventional swine farms and natural farms. E. coli isolates were evaluated for the minimum inhibitory concentration (MIC) of 17 antimicrobials, extended-spectrum beta-lactamase (ESBL)- producing enzymes, and plasmid-mediated colistin-resistant genes. Materials and Methods: Fecal swabs were longitudinally collected from healthy pigs at three stages comprising nursery pigs, fattening pigs, and finishers, in addition to their environments. High-generation antimicrobials, including carbapenem, were selected for the MIC test. DNA samples of colistin-resistant isolates were amplified for mcr-1 and mcr-2 genes. Farm management and antimicrobial applications were evaluated using questionnaires. Results: The detection rate of ESBL-producing E. coli was 17%. The highest resistance rates were observed with trimethoprim/sulfamethoxazole (53.9%) and colistin (48.5%). All isolates were susceptible to carbapenem. Two large intensive farms that used colistin-supplemented feed showed the highest colistin resistance rates of 84.6% and 58.1%. Another intensive farm that did not use colistin showed a low colistin resistance rate of 14.3%. In contrast, a small natural farm that was free from antimicrobials showed a relatively high resistance rate of 41.8%. The majority of colistin-resistant isolates had MIC values of 8 μg/mL (49%) and ≥16 μg/mL (48%). The genes mcr-1 and mcr-2 were detected at rates of 64% and 38%, respectively, among the colistin-resistant E. coli. Conclusion: Commensal E. coli were relatively sensitive to the antimicrobials used for treating critical human infections. Colistin use was the primary driver for the occurrence of colistin resistance in swine farms having similar conventional management systems. In the natural farm, cross-contamination could just occur through the environment if farm biosecurity is not set up carefully, thus indicating the significance of farm biosecurity risk even in an antimicrobial-free farm

    PCR-based Restriction Fragment Length Polymorphism for Subtyping of Salmonella from Chicken Isolates

    No full text
    ABSTRACT Genotypic diversity in two flagellin genes, fliC and fljB, encoding phase-1 and phase-2 flagellin of Salmonella enterica, offers a potential biomarker for Salmonella subtyping. Forty-seven Salmonella isolates of 20 different serovars derived from chicken samples in Thailand were studied using the fliC/ fljB PCR-based RFLP assay. With two restriction endonucleases, MboI and HhaI, the fliC showed 11 and 9 patterns, while the fljB showed 6 and 7 patterns respectively. Though the PCR-based RFLP test cannot replace serotyping, the assay is based on the flagellin genes encoding proteins on the bacterial surface that are related to serotyping scheme. Overall, the assay was reproducible and successfully applied to simply screen Salmonella serovars as an alternative subtyping test for rapid traceability of Salmonella contamination in chicken production
    corecore