10 research outputs found

    Can heterogeneity in ventilation be good?

    Get PDF
    Selection of the optimal positive end-expiratory pressure (PEEP) to avoid ventilator-induced lung injury in patients under mechanical ventilation is still a matter of debate. Many methods are available, but none is considered the gold standard. In the previous issue of Critical Care, Zhao and colleagues applied a method based on electrical impedance tomography to help select the PEEP that minimized ventilation inhomogeneities. Though promising when alveolar collapse and overdistension are present, this method might be misleading in patients with normal lungs

    Computed tomographic assessment of lung weights in trauma patients with early posttraumatic lung dysfunction

    Get PDF
    Introduction: Quantitative computed tomography (qCT)-based assessment of total lung weight (M(lung)) has the potential to differentiate atelectasis from consolidation and could thus provide valuable information for managing trauma patients fulfilling commonly used criteria for acute lung injury (ALI). We hypothesized that qCT would identify atelectasis as a frequent mimic of early posttraumatic ALI. Methods: In this prospective observational study, M(lung) was calculated by qCT in 78 mechanically ventilated trauma patients fulfilling the ALI criteria at admission. A reference interval for M(lung) was derived from 74 trauma patients with morphologically and functionally normal lungs (reference). Results are given as medians with interquartile ranges. Results: The ratio of arterial partial pressure of oxygen to the fraction of inspired oxygen was 560 (506 to 616) mmHg in reference patients and 169 (95 to 240) mmHg in ALI patients. The median reference M(lung) value was 885 (771 to 973) g, and the reference interval for M(lung) was 584 to 1164 g, which matched that of previous reports. Despite the significantly greater median M(lung) value (1088 (862 to 1,342) g) in the ALI group, 46 (59%) ALI patients had M(lung) values within the reference interval and thus most likely had atelectasis. In only 17 patients (22%), Mlung was increased to the range previously reported for ALI patients and compatible with lung consolidation. Statistically significant differences between atelectasis and consolidation patients were found for age, Lung Injury Score, Glasgow Coma Scale score, total lung volume, mass of the nonaerated lung compartment, ventilator-free days and intensive care unit-free days. Conclusions: Atelectasis is a frequent cause of early posttraumatic lung dysfunction. Differentiation between atelectasis and consolidation from other causes of lung damage by using qCT may help to identify patients who could benefit from management strategies such as damage control surgery and lung-protective mechanical ventilation that focus on the prevention of pulmonary complications.Leipzig University Hospita

    Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    Get PDF
    Introduction: Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods: We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student`s t test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results: Thirty-one ARDS patients (A: PaO(2)/FiO(2) <= 200, 45 +/- 14 years, 16 males) and 11 controls (C:52 +/- 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 +/- 27.2%, C:76.7 +/- 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 +/- 35.2%, C:21.8 +/- 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 +/- 54.3 mu m, C:86.4 +/- 33.3 mu m, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P = 0.03). The extension of normal epithelium showed a positive correlation with PaO(2)/FiO(2) (r(2) = 0.34; P = 0.02) and a negative correlation with plateau pressure (r(2) = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO(2)/FiO(2) (r(2) = 0.27; P = 0.04). Conclusions: Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Laboratorio de Investigacao Medica-LIM05 do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (LIMHC-FM-USP
    corecore