157 research outputs found

    New Challenging Scenarios in Transcatheter Aortic Valve Implantation: Valve-in-valve, Bicuspid and Native Aortic Regurgitation

    Get PDF
    Transcatheter aortic valve implantation (TAVI) is the most frequently performed structural technique in the field of interventional cardiology. Initially, this procedure was only used in patients with severe symptomatic aortic stenosis and prohibitive risk. Now, barely one decade after its introduction, TAVI indications extend to low- and intermediate-risk patients. Despite these advances, several challenging scenarios are still on the periphery of the evidence base for TAVI. These include valve-in-valve procedures, lower-risk patients with bicuspid aortic valve and the treatment of pure aortic regurgitation. Whereas the valve-in-valve indication has expanded rapidly, evidence for the use of TAVI compared with conventional surgery for bicuspid aortic valve is limited, including the best choice of device should TAVI be used. Evidence for TAVI in pure aortic regurgitation is still anecdotal because of suboptimal outcomes. Operators worldwide have described variations in the TAVI procedural technique to achieve commissural alignment and to minimise the rate of pacemaker use through cusp overlap implantation. In light of the potential clinical benefits, this may also be an area of further development. This review aims to discuss the current evidence available supporting the use of TAVI for these new indications

    Application of mixed reality to ultrasound-guided femoral arterial cannulation during real-time practice in cardiac interventions

    Get PDF
    Producción CientíficaMixed reality opens interesting possibilities as it allows physicians to interact with both, the real physical and the virtual computer-generated environment and objects, in a powerful way. A mixed reality system, based in the HoloLens 2 glasses, has been developed to assist cardiologists in a quite complex interventional procedure: the ultrasound-guided femoral arterial cannulations, during real-time practice in interventional cardiology. The system is divided into two modules, the transmitter module, responsible for sending medical images to HoloLens 2 glasses, and the receiver module, hosted in the HoloLens 2, which renders those medical images, allowing the practitioner to watch and manage them in a 3D environment. The system has been successfully used, between November 2021 and August 2022, in up to 9 interventions by 2 different practitioners, in a large public hospital in central Spain. The practitioners using the system confirmed it as easy to use, reliable, real-time, reachable, and cost-effective, allowing a reduction of operating times, a better control of typical errors associated to the interventional procedure, and opening the possibility to use the medical imagery produced in ubiquitous e-learning. These strengths and opportunities were only nuanced by the risk of potential medical complications emerging from system malfunction or operator errors when using the system (e.g., unexpected momentary lag). In summary, the proposed system can be taken as a realistic proof of concept of how mixed reality technologies can support practitioners when performing interventional and surgical procedures during real-time daily practice.Junta de Castilla y León - Gerencia Regional de Salud (SACyL) (grant number GRS 2275/A/2020)Instituto de Salud Carlos III (grant number DTS21/00158)Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    A simplified formula to calculate fractional flow reserve in sequential lesions circumventing the measurement of coronary wedge pressure: The APIS-S pilot study

    Get PDF
    Background: A simplified formula to calculate the predicted fractional flow reserve (FFR) in sequen­tial coronary stenosis without balloon inflation is hereby proposed. Methods: In patients with an indication for FFR and sequential coronary stenosis, FFR was recorded distally and between the lesions. The predicted FFR for each stenosis was calculated with a novel formu­la. While treating one of the lesions, wedge pressure was measured during balloon inflation to calculate Pijls’ formula. FFR of the remaining lesion was finally recorded (measured FFR). Results: Forty patients were enrolled in the study, 4 (10.0%) had a distal FFR > 0.80 and were excluded from the main analysis. In the remaining 36 patients, the novel formula and Pijls’ formula showed virtually absolute agreement (ICCa 0.999, R2 = 0.997 for the proximal lesion, R2 = 0.999 for the distal lesion, kappa 1.000, Se 100%, Sp 100%). The agreement between predicted and measured FFR was good (ICCa 0.820; 0.640–0.909, R2 = 0.717, intercept = 0.05, slope = 0.92, kappa 0.748, Se 75%, Sp 96%). In 19 (47.5%) cases the use of the formula enabled the operator to freely decide which lesion should be treated first, an option not available if the percutaneous coronary intervention (PCI) were guided by the largest pressure drop across each lesion. Conclusions: The predicted FFR for each lesion in sequential coronary stenosis can be accurately calculated by a simplified formula circumventing the need for balloon inflation. This approach provides the operator upfront, with detailed information on physiology, thus having a potentially high impact on the corresponding PCI strategy

    Comparison of Figulla Flex¼ and Amplatzerℱ devices for atrial septal defect closure: A meta-analysis

    Get PDF
    Background: Atrial septal defect (ASD) is one of the most common congenital heart diseases. Percutaneousclosure is the preferred treatment, but certain complications remain a concern. The most common devices are AMPLATZERℱ (ASO) (St. Jude Medical, St. Paul, MN, USA) and Figulla Flex¼ septal occluders (FSO) (Occlutech GmbH, Jena, Germany). The present study aimed to assess main differences in outcomes.Methods: A systematic search in Pubmed and Google scholarship was performed by two independent reviewers for any study comparing ASO and FSO. Searched terms were “Figulla”, “Amplatzer”, and “atrial septal defect”. A random-effects model was used.Results: A total of 11 studies including 1770 patients (897 ASO; 873 FSO) were gathered. Baseline clinical and echocardiographic characteristics were comparable although septal aneurysm was more often reported in patients treated with ASO (32% vs. 25%; p = 0.061). Success rate (94% vs. 95%; OR: 0.81; 95% CI: 0.38–1.71; p = 0.58) and peri-procedural complications were comparable. Procedures were shorter, requiring less fluoroscopy time with an FSO device (OR: 0.59; 95% CI: 0.20–0.97; p = 0.003). Although the global rate of complications in long-term was similar, the ASO device was associated with a higher rate of supraventricular arrhythmias (14.7% vs. 7.8%, p = 0.009).Conclusions: Percutaneous closure of ASD is a safe and effective, irrespective of the type of device. No differences exist regarding procedural success between the ASO and FSO devices but the last was associated to shorter procedure time, less radiation, and lower rate of supraventricular arrhythmias in follow-up. Late cardiac perforation did not occur and death in the follow-up was exceptional

    Left atrial decompression through unidirectional left-to-right interatrial shunt for the treatment of left heart failure : first-inman experience with the V-Wave device

    Get PDF
    Aims: Elevated filling pressures of the left atrium (LA) are associated with poorer outcomes in patients with chronic heart failure. The V-Wave is a new percutaneously implanted device intended to decrease the LA pressure by the shunting of blood from the LA to the right atrium. This report describes the first-in-man experience with the V-Wave device. Methods and results: A 70-year-old man with a history of heart failure of ischaemic origin, left ventricular dysfunction (LVEF: 35%, pulmonary wedge: 19 mmHg), no right heart dysfunction, NYHA Class III and orthopnoea despite optimal treatment, was accepted for V-Wave device implantation. The device consists of an ePTFE encapsulated nitinol frame that is implanted at the level of the interatrial septum and contains a trileaflet pericardium tissue valve sutured inside which allows a unidirectional LA to right atrium shunt. The procedure was performed through a transfemoral venous approach under fluoroscopic and TEE guidance. The device was successfully implanted and the patient was discharged 24 hours after the procedure with no complications. At three-month follow-up a left-to-right shunt through the device was confirmed by TEE. The patient was in NYHA Class II, without orthopnoea, the Kansas City Cardiomyopathy index was 77.6 (from 39.1 at baseline) and NT-proBNP was 322 ng/mL (from 502 ng/mL at baseline). The QP/QS was 1.17 and the pulmonary wedge was 8 mmHg, with no changes in pulmonary pressure or right ventricular function. Conclusions: Left atrial decompression through a unidirectional left-to-right interatrial shunt represents a new concept for the treatment of patients with left ventricular failure. The present report shows the feasibility of applying this new therapy with the successful and uneventful implantation of the V-Wave device, which was associated with significant improvement in functional, quality of life and haemodynamic parameters at 90 days
    • 

    corecore